IEICE TRANS. 7?7, VOL.E84-77, NO.1 JANUARY 2001

[PAPER

Two Algorithms for Random Number Generation

Implemented by Using Arithmetic of Limited Precision

Tomohiko UYEMATSU{, Member and Yuan LI, Student Member

SUMMARY This paper presents two different algorithms for
random number generation. One algorithm generates a random
sequence with an arbitrary distribution from a sequence of pure
random numbers, i.e. a sequence with uniform distribution. The
other algorithm generates a sequence of pure random numbers
from a sequence of a given i.i.d. source. Both algorithms can
be regarded as an implementation of the interval algorithm by
using the integer arithmetic with limited precision. We analyze
the approximation error measured by the variational distance
between probability distributions of the desired random sequence
and the output sequence generated by the algorithms. Further,
we give bounds on the expected length of input sequence per one
output symbol, and compare it with that of the original interval
algorithm.

key words: random number generation, interval algorithm,
arithmetic code, variational distance, limited precision

1. Introduction

Random number generation (RNG) is one of the key
issues in information theory, closely related to source
coding and data compression [1],[2]. Han and Hoshi
[3] proposed an extremely flexible and efficient algo-
rithm for random number generation. Their algorithm
is called the interval algorithm, and generates a ran-
dom sequence with an arbitrary distribution from a
sequence of a given independent and identically dis-
tributed (i.i.d.) source. They gave some bounds on
the expected length of input sequence per one output
symbol for the interval algorithm. Although the inter-
val algorithm is general and efficient, it is based on the
successive refinement of partitions of the unit interval
[0,1). This implies that as the length of the output or
input sequences gets longer, the required precision for
partitioning the unit interval becomes higher. Hence,
the interval algorithm requires unlimited precision of
the arithmetic, and is hard to be implemented.

The aim of this paper is to present algorithms
which provide implementations of the interval algo-
rithm by using the integer arithmetic with limited pre-
cision. We propose two algorithms for RNG. One algo-
rithm generates a random sequence with an arbitrary
distribution from a sequence of pure random numbers,
il.e. 1.i.d. with uniform distribution. The other algo-
rithm generates a sequence of pure random numbers

Manuscript received January 15, 2003.

Manuscript revised April 18, 2003.

IThe authors are with the Department of Communica-
tions and Integrated Systems, Tokyo Institute of Technol-
ogy, Tokyo 152-8552 Japan.

using a sequence from a given i.i.d. source. Both al-
gorithms can be regarded as an implementation of the
interval algorithm by using the integer arithmetic with
limited precision. We also analyze the performance
of the proposed algorithms for finite output length.
First, we show bounds on the approximation error mea-
sured by the variational distance between probability
distributions of the desired random sequence and the
output sequence generated by the algorithms. These
bounds enable us to determine a sufficient precision
(word length) for a given maximum allowable approxi-
mation error. Second, we give bounds on the expected
length of input sequence per one output symbol, and
compare them with that of the original interval algo-
rithm.

2. RNG using binary i.i.d. sequences with uni-
form distribution

In this section, we consider to generate a random se-
quence with a specified distribution using a sequence
of pure random bits, i.e. a binary i.i.d. sequence with
uniform distribution.

2.1 Algorithm I

Consider the generation of an i.i.d. sequence of fixed
length n over Y = {1,2,---, N} with a specified proba-
bility distribution @ using a binary 1.1.d. sequence with
uniform distribution P(1) = P(2) = 1/2. For this RNG
problem, we propose our first algorithm.

Algorithm I (generate arbitrary i.i.d. sequences)

1. Set

u =21

F= | ey e inew
= |24y =1,
1 2 . J 1))

]:1
Fp =0,
R=2""1,

and partition the interval [0,%) into N disjoint
subintervals J(1),---, J(N) such that

o= [TR

b e {17"'7N}7

where |z| denotes the maximum integer smaller
than or equal to x.

2. Set m =1, s =t = A (null string), a, =4 = 0,
Bs =6 = u, I(S) = [asaIBJ)v and J(t) = [7t75t)-

3. Get a symbol from the input sequence. If the
obtained symbol is a € {1,2}, then generate the
subinterval I(sa) of I(s) such that

I(sa) = [asan@sa)a
a5 = a; +(a— 1)R/2,
Bsa = a5 +aR/2.

Let R = R/2.
4. If I(sa) is entirely contained in some J(tb) (b €
{1,---,N}), namely,

Ytb S Asq < /Bsa S th

holds for some b, then output b as the value of the
m-th output Y,,, and let ¢ = ¢b. Otherwise, go to
step 6.

5. If m = n, the algorithm stops. Otherwise, we find
the value v such that

2'w—1 S (Jt —7t)2” < 211),
where J(t) = [4¢,0:). Then, let
Z = (8 — 7)2%,

and partition the interval [0,Z) into N disjoint
subintervals such that

- 22 3] |22)
be{l,---,N}.

Furthermore, update the interval I(sa) and R such
that (recall ¢ < a4 < Bsa)

I(sa) = [asaa /Bsa)a

Qsq = (asa - 7t)2v7
/Bsa = (/Bsa - 7t)2v7
R = R2".

Lastly, let m = m + 1, and return to step 4.

6. Set s = sa, and return to step 3.

This algorithm is a straight-forward implementa-
tion of the interval algorithm [3]. All the variables such
as ay,, 3,,:,6;, and R take integer values in the range
[0,2%). Hence, the proposed algorithm can be executed
by using the integer arithmetic with at most 2w+ 1 bits.
In this sense, we call w as the word length. Since the
distribution of the input sequence is uniform, we can
partition the interval I(s) corresponding to the input
sequence without error. On the contrary, the partition
corresponding to the output sequence J(¢) is done by

IEICE TRANS. 7?7, VOL.E84-77, NO.1 JANUARY 2001

the same method developed by Jones [4] for the arith-
metic code by employing the integer arithmetic with
limited precision.

It is easy to extend the proposed algorithm for an
M-ary input sequence with uniform distribution. Fur-
ther, one output symbol is always generated by reading
at most w symbols from an input sequence.

Remark 1: The variable u denotes the scaling factor.
In the prescribed algorithm, we set u = 2% 1. However,
if possible, we should choose u such that u@Q(b) becomes
integer for all b € {1,---,N}. If we choose such a
value for u, we can decreased the upper bound on the
approximation error shown in Theorem 1 by half.

Remark 2: The proposed algorithm can generate not
only i.i.d. sequences but also sequences with an ar-
bitrary probability distribution. In such a case, the
partition at step 5 should be based on the conditional
probability Q(blt) depending on the output sequence ¢
generated so far (cf. [3, Remark 12]).

Example 1: Consider the case with w = 12 (the word
length is 12 bits), N = 3, Q(1) = Q(2) = Q(3) =
1/3 (output sequences have a uniform distribution over
{1,2,3}), n = 2 (the length of output sequence).
(step.1) Set w = R = 2¥~1 = 2048, and

Fo =0, F, = 683, Fy = 1365, Fs = 2048.

Then, partition the interval [0,2048) into subintervals,
and obtain

J(1) =[0,683), J(2) = [683,1365),
J(3) = [1365,2048).

(step.2) Set m =1, I(A) = J(A) = [0, 2048).

(step.3) Get a symbol from an input sequence, and sup-
pose that we have a value 2. Then, partition the inter-
val I(A), and obtain I(2) = [1024,2048). Set R = 1024.
(step.4) I(2) ¢ J(b) for b € {1,2,3}. Go to step.6.
(step.6) Set s = 2 and return to step.3.

(step.3) Get a symbol from the input sequence again,
and suppose that we have a value 2. Partition the in-
terval I(2) into I(22) = [1536,2048), then set R = 512.
(step.4) Since I(22) C J(3), output 3 as the first out-
put number.

(step.5) For v3 = 1365 and 3 = 2048, find a value v

which satisfies
2t < (2048 — 1365)2° < 2'2,

and obtain v = 2. Therefore, we have Z = 2732. Next,
partition [0,2732) into subintervals

J(31) =[0,911), J(32) = [911, 1821),

J(33) = [1821,2732).
Set I(22) = [684,2732), R = 2048, and m = 2.

(step.4) I(22) ¢ J(3b) for b € {1,2,3}. Go to step.6.
(step.6) Let s = 22, and return to step.3.

UYEMATSU and LI: TWO ALGORITHMS FOR RANDOM NUMBER GENERATION

(step.3) Get a symbol from the input sequence, and
suppose that we have a value 1. Partition the interval
I(22) into I(221) = [684, 1708), then set R = 1024.
(step.4) We have I(221) ¢ J(3b) for b € {1,2,3}. Go
to step.6.

(step.6) Let s = 221, and return to step.3.

(step.3) Get a symbol from the input sequence again,
and suppose to have a value 2. Partition the interval
I(221) into I(2212) = [1196,1708), and let R = 512.
(step.4) Since I(2212) C J(32), output 2 as the second
output number.

(step.5) Since m = n, stop the algorithm.

2.2 Performance of Algorithm I

The performance of the RNG algorithm can be mea-
sured by two criteria [6]. One is the approximation
error of output statistics measured by the variational
distance between the desired distribution and the distri-
bution of output sequences obtained by the algorithm.
The other is the efficiency of the algorithm measured by
the expected length of input sequence per one output
symbol.

Consider to generate a sequence of fixed length n
by our algorithm I, and let Q”(y) denote the proba-
bility that the sequence y € Y™ is generated by the
algorithm. Define the approximation error of the algo-
rithm I as

62 3 10" - "), (1)
yeyn

where Q" (y) is the desired probability of the sequence
y given by

n

Q") =[[Qw) for y=u1- vn.

=1

Then, the next theorem shows a bound on the approx-
imation error 6.

Theorem 1: For any fixed n > 0, we have
6 < nN2 V2, (2)
This theorem indicates that the approximation er-
ror is an exponential function of the word length w.

Further, the approximation error # vanishes as w tends
to infinity.

Define the upper bound on the approximation er-
ror as

0 2 nNo u+2, (3)
By taking the logarithm of both sides of (3), we obtain
w = 2 — log, © +logy n + logy N

For a given maximum allowable approximation error,

this equation enables us to determine a sufficient word
length w for the algorithm I.

Proof of Theorem 1: Let y € Y* be a finite sequence
(may be null string). Just after the algorithm I outputs
the last symbol of the sequence y, the algorithm parti-
tions [0, Z) into N subintervals J(yb) (b € V) at step
5. In this case, the conditional probability that the
algorithm I outputs b as the next symbol is given as

A 1 (|zFR 1 ZFy1 1
= {5][5 al)
Then, using the definitions of F, and |-], and 2¥~! <

Z <2¥ foranybe)

Qoly) < =t e
<1t u@(b) 49wt
u
= Q(b) +27¥*2. (4)
In the same manner, for any b € Y
Q(bly) > Q(b) —27***. (5)
Combining (4) and (5) yields
OBly) - Qb) < 27 foranybey. (6)

By using (6), we obtain

6= Y 10"y - Q")

yeyn
= > D 1@ (wb) — Q" (yb)|
yeyn-1bey
< > Y {ieewe e - e®e v
yeyn-1bey
+RME"(v) - QB (W)}
= > Y106l - e®)e"(v)
yeyn-1bey
+ > >0t y) - (w)
yeYn-1bey
< N2 N QrT(y)
yeyn—1
+ Y QN y) - Q" (w)
yeyn-1
= N2 30N Hy) - Q@ N ()l ()
yeyn-1

By repeating the same derivation for the second term

in the right hand side of (7), we obtain (2). Q.E.D.

The next theorem shows bounds on the expected
length of the input sequence to generate a sequence
with length »n by the proposed algorithm I.

Theorem 2: Let E(L) be the expected length L of
input sequence to generate a sequence with length =»
by using the proposed algorithm I. If § defined in (1)
satisfies 6 < 1/2, then

nH(Q)—5(6,n) < E(L) < nH(Q)+3+5(6,n),(8)
where

5(6,n) £ —6log, 6+ nélog, N, (9)
and H(Q) is the entropy of the desired distribution Q.

Before we prove Theorem 2, we show some useful
lemmas.

Lemma 1:[5, Lemma 2.7] If two distributions @
and Qs over a finite alphabet Z satisfies

823" 1Q1(a) - Q2(a)l < 1/2,

a€EZ

then we have

[H(Q1) — H(Q2)| < —6log,(8/12]), (10)
where | Z| denotes the cardinality of Z.

Lemma 2:[3, Theorem 1 and Remark 8] If we employ
the original interval algorithm to generate one symbol
with the distribution) using the sequence of pure ran-
dom bits, the expected length E'(f,) of the input se-
quence can be bounded as

~

H(Q) < E(L) < H(Q) +3.

Proof of Theorem 2: Since 6 < 1/2, we have

10" (y) - Qv =6 < 1/2.

yeyn

Using Lemma 1 for the distributions Q” and Q" over

Y™, we have
InH(Q) — H(Q™)| < —0logy(6/N™) = §(8,n),(11)

where H(Q") denotes the entropy of the distribution
Q". Since our proposed algorithm I can be regarded
as an ideal interval algorithm for the distribution Q",
according to Lemma 2, we have

H(Q™) < E(L) < H(Q™)+3.

Substituting (11) into the above inequalities, we obtain

(8)- Q.E.D.

Comparing (8) and Lemma 2, the difference of ex-
pected lengths of input sequences between the proposed
algorithm I and the original interval algorithm is at
most 3 + (6, n). Further, according to Theorem 1, for
fixed n, (8) tends to

as w — o0.

nH(Q) < E(L) <nH(Q)+3,

IEICE TRANS. 7?7, VOL.E84-77, NO.1 JANUARY 2001

These bounds are identical with the bounds on the ex-
pected length E'(f,) of the input sequence for the orig-
inal interval algorithm described in Lemma 2 (substi-
tuting Q™ instead of Q).

From Theorem 1 and Theorem 2, we can conclude
that the performance of the algorithm I approaches
to that of the original interval algorithm, as the word

length w tends to infinity.

Remark 3: Close look of the proofs shows that even
if the output sequence has any probability distribution,
i.e. Markov or stationary distribution, both Theorem 1
and Theorem 2 are valid.

3. RNG of binary i.i.d. sequences with uniform
distribution

In this section, we deal with the inverse problem treated
in Section 2. Namely, consider the generation of an
11.d. sequence of length n with a uniform distribution
using an i.i.d. sequence with a given distribution P. We
propose our second algorithm, and analyze its perfor-
mance.

3.1 Algorithm II

Consider the generation of an i.i.d. sequence of uniform
distribution of length n over) = {1,2} using an i.i.d.
input sequence over X = {1,2,---, M} with probabil-
ity P. For this RNG problem, we propose our second
algorithm which can also be implemented by using the
integer arithmetic with finite precision.

Algorithm II (generate i.i.d. sequences with uni-
form distribution)

1. Set

u =

Fp =0,

J R ip(') =1, M

i — |5 u y = 1,0,
2"t J

Z=R=2""1,

and partition the interval [0,u) into two disjoint

subintervals J(1) and J(2) such that
7(1) = [0, B/2), J(2) = [R/2u)

2. Set m =1, s =t = A (null string), a, = 4 = 0,
/Bs = Jt = u, I(S) = [asn@-!)a and J(t) = 7t75t)-
Partition the interval I(s) such that

I(sa) — [asan@sa)a
ZF,_ 1 ZF, 1
asa:\‘ 1+_J,,83a:\‘ +_J,
% 2 %

2
for ac{l,---,M}.

Let R = R/2.

UYEMATSU and LI: TWO ALGORITHMS FOR RANDOM NUMBER GENERATION

3. Get a symbol from the input sequence. If we obtain
a value @ € X, then choose the subinterval I(sa)
of I(s).

4. If I(sa) is entirely contained in some J(tb) =
[¥t6, 828) (b € {1,2}), namely,

Ytb S Asq < /Bsa S th
holds for some b, then output b as the m-th output
Y., and let ¢ = tb. Otherwise, go to step 6.

5. If m = n, the algorithm stops. Otherwise, let m =
m + 1, and partition the interval J(¢) as follows.

a. Jt — Yt = R:
Partition J(¢) into J(¢1) and J(¢2) such that
J(tl) = [7t77t + R/2) ’
J(t2) = [y + R/2,8¢).
b. R/2 < Jt Y < R:

i If v = 0, the lower bound of the subinterval
J(¢1) may be smaller than 0. Hence, partition
J(t) into J(¢1) and J(¢2) such that

J(t1) = [0,6; — R/2),
J(t2) = [6: — R/2,4:).
ii If §; = Z, the upper bound of the subinterval

J(¢2) may be greater than Z. Hence, partition
J(t) into J(¢1) and J(¢2) such that

J(t1) = [y, v + R/2),
J(t2) = [y + R/2,8¢).
c. 0<d -7 < R/2
If 44 = 0, the upper bound of the subinterval
J(¢1) is smaller than 0. Hence, we omit the
partition and let
J(#2) = [1,6:).

ii If §; = Z, the lower bound of the subinterval
J(¢2) is greater than Z. Hence, we omit the
partition and let

J(#1) = [71,6:).
Let R = R/2 and return to step 4.
6. Set s = sa, and find the value v such that

=N

2'w—1 S (/83 - a’)2v < 211),
where I(s) = [a,,3;). Then, let
Z = (,8, - a’)2v,

and partition the interval [0,Z) into M disjoint
subintervals such that

I(sa) = [asaa /Bsa)a

ZF,, 1 | ZF, 1
|25 2] = |22 4,

Asq =

for ac{l,---,M}.

Further, update the subinterval J(¢b) and R such
that

J(tb) = [veb,043), for b=1,2,
Yo = { (yep — @,)2° 3 o, <7y

0 if Y < Qg S th
Bay = (dtp —)27 if by <3,
& Z if v < B, <dsp

R = 2°R,
and return to step 3.

It should be noted here that in step 5, lower bound
or upper bound of the subinterval J(¢1) or J(¢2) may
become outside the interval [0, Z). Hence, in step 5, we
need complicated partitioning of the interval.

Example 2: Consider the generation of random se-
quence of length n = 3 with uniform distribution from
the output sequence of the source with the distribution
P(1) =1/5, P(2) = P(3) = 2/5. We assume the word
length w = 5.

(step.1) Set u = R = Z = 2¥~1 = 16. Then, we have

Fo=0, F =3, Fy=10, Fs=16.
We also have
J(1)=1[0,8), J(2)=[8,16).
(step.2) Set I(A) = J(A) = 16, and m = 1. Partition

the interval I(A

I1(1) = [0,
Let R =8.

(step.3) Get a symbol from an input sequence and sup-
pose that we have a value 2.

(step.4) I(2) ¢ J(b) for b € {1,2}. Go to step 6.
(step.6) For ag =3 and (32 = 10, we find an integer
v such that

2* < (B2 — ag)2” < 27,
and obtain v = 2. Then, let Z = (8s — as)2” = 28,
partition the new interval [0, 28), and obtain

1(21) = [0,6), I(22)=1[6,17), I(23)=
Update the interval J(b) (b € {1,2}) such that

J(1) =1[0,20), J(2)=

and set R = 32. (Here, the true interval should be
J(1) =[-12,20) and J(2) = [20, 52).)

(step.3) Get a symbol from the input sequence, and
suppose that we have a value 2.

(step.4) Since I(22) C J(1), output 1 as the first output
number. Let ¢ = 1.

(step.5) Let m = 2 and partition the interval J(1) into

, and obtain

)
3), I(2)=1[3,10), I(3)=[10,16).

17, 28) .

[20,28),

6
subintervals

J(11) =1[0,4), J(12) = [4,20),
and let R = 16.

(step.4) Since I(22) C J(12), output 2 as the second
output number. Let ¢ = 12.

(step.5) Let m = 3 and partition the interval J(12) into
subintervals

J(121) = [4,12), J(122) = [12,20).

Let R = 8.

(step.4) I(22) ¢ J(12b) for b € {1,2}. Go to step 6.
(step.6) For ass = 6, and 822 = 17, find an integer such
that

2* < (Baa — a2)2" < 2%,

and obtain v = 1. Then, let Z = (822 — a22)2” = 22,

and partition the new interval [0, 22) into subintervals
1(221) = [0,5),
1(223) = [13,22).

1(222) = [5,13),

Update the interval J(12b) (b € {1,2}) such that

J(121) = [0,12), J(122) = [12,22),

Let R = 16.

(step.3) Get a symbol from the input sequence, and
suppose that we have a value 1.

(step.4) Since I(221) C J(121), output 1 as the third
output number. Let ¢ = 121.

(step.5) Since m = n = 3, stop the algorithm.

3.2 Performance of Algorithm II

The next theorem shows a bound on the approximation
error of the proposed algorithm due to the arithmetic
of limited precision.

Theorem 3: For any fixed n > 0, let Q"(y) denote
the probability that the output sequence y € Y" is
generated by the proposed algorithm II. Then,

3 10m(y) - 27" < (#

yeyn 1 — Pmas

-)w)M2‘“’+2, (12)

2
"10g2(pmaz + 2—'w+2

where [z] denotes the minimum integer greater than
or equal to z, and

Pmaz = gleafp(a)- (13)

Similar to the proposed algorithm I, this theorem
indicates that the approximation error of the proposed
algorithm II is an exponential function of the word
length w. Further, the approximation error vanishes as

IEICE TRANS. 7?7, VOL.E84-77, NO.1 JANUARY 2001

the word length w tends to infinity. For a given maxi-
mum allowable approximation error, (12) enables us to
determine a sufficient word length w for the algorithm
II.

Before we prove the theorem, it is convenient to
describe the algorithm II in terms of a generating tree
T introduced in [3]. The generating tree T is a M-ary
tree (possibly of infinite size), and can be character-
ized by the following properties, where the terms nodes
and leaves denote internal nodes and terminal nodes,
respectively.

1. The tree T is complete, i.e. every node has M chil-
dren and those M branches that connect the node
to the M children are labeled as 1,2,---, M in the
order from left to right.

2. Each leaf of the tree T is labeled with one of the
sequence in Y™ (the same label may be assigned to
several leaves).

We can describe the algorithm II in terms of a
generating tree T as follows. Every node (or leaf)
is uniquely denoted by the sequence (= ziz2---ap)
where x1, - - -, x3, are the labels of branches on the path
from the root to the node (or leaf) ®. Each node (or
leaf) ® of the tree T corresponds one-to-one to the
subinterval T(®). A node ® associated with the subin-
terval I(®) has M children za (a € X) that are asso-
ciated with the subintervals I(®a), respectively. More-
over, a subinterval I(#) is terminating, i.e. the algo-
rithm II stops just after reading the input sequence @,
if and only if the corresponding @ is a leaf of the tree
T.

Given a generating tree T as above, the algorithm
for random number generation is carried out as follows.
Starting at the root of the tree we see the input symbol
and let the result be a € {1,---, M}. Then we proceed
along the branch labeled a to reach a new node or a leaf.
If it is a node we continue to see the next input symbol
and repeat the same process; otherwise, we output the
label assigned to the leaf and stop the algorithm. It
is easy to see this RNG algorithm is equivalent to the
algorithm II.

Define T as the set of leaves, and 7 (y) as the set of
leaves with its label y € Y. Hence, ® € T (y) implies
that the algorithm II generates the output y from any
input sequence with its prefix ®. Further, define T as
the set of nodes.

Next, for any integer ¢ > 0, any sequence & =
z1---x; € XY, and any a € X, define the conditional
probability P(a|w) and the probability ﬁ(w) as

A s |H(=a)
P = 5 e T ()
P(e) 2 Hﬁ(a:,-h:l---a:i_l), (15)

where ||I(za)|| denotes the width of the interval I(za)

UYEMATSU and LI: TWO ALGORITHMS FOR RANDOM NUMBER GENERATION

determined at step.2 or step.6 of the algorithm. P(w)
means the approximated occurrence probability of
in the algorithm II. It should be noted that even if
the input sequence ® = x1---z; is an output of an
ii.d. source, P(a) isin general a distribution with finite
state. This makes the analysis of the algorithm II hard.

Here, we describe some lemmas needed to prove
Theorem 3.

Lemma 3: For any integer { > 0, and a generating
tree T' of the proposed algorithm II, we have

S| Y (@) - P@)

Yyeyr EeTY):
LByt

< Y [P(=) — P(a)], (16)

where £(2) denotes the length of the sequence € X,
and P(w) is the occurrence probability of the input se-
quence &, 1.e.

Proof of Lemma 3: First, by using the triangular

inequality, we have

)N

Yeyr @eT (Y):L(2)<t

<D D

yeY" T (y):4(®)<t

Y 1P(=) - P(=)l. (17)

TeT4(®)<t

(P(x) — P(=))

|P() — P(e)

According to (14), we have
Y Plalz) = 1.
acX

Hence, for any finite sequence & € X'*, we have

|P(2) — P(x)|
= |B(2) Y Plalz) - P(2) 3 P(a)‘
< > |P(za) - P(za)|. (18)

By using (18) repeatedly, we obtain

Y P@)—P@) =3 > |P(x)- Pe)

LecT: k=1 ®ecT:
(&)<t L(B)=k
< 3 |P(z) - P(z)]. (19)
LTecXxt

Combining (17) and (19), we obtain (16). Q.E.D.

7

Lemma 4: For any sequence # € A'* and any a € X,

Pale) - P(a)] < 27+2. (20)
Further, for any integer ¢ > 0, we have

Y |P(=) — P(=)| < tM27vF2, (21)

_CX?

This lemma can be proven in a similar manner as
the proof of Theorem 1. So, we omit the proof.

Lemma 5: For any sequence & € X",

> |P(=a) - P(za)]

acX
< [P(2) - P(2)| + M2 2 (praa) @), (22)

where pq. is defined in (13).

Proof of Lemma 5:

> |P(=a) - P(za)]
< Y Plafe)|P() — P(=)|

+ Y [P(ale) — P(a)|P(x)

acX
< |B() = P(@)| + M2+ (pao)™, (23)

where the last inequality comes from (20) and P(z) <
(Prmaz) ®). Q.E.D.

Lemma 6: For any sequence y € Y7,

Y P@) =2, (24)

2T (Y)

where the distribution P is defined in (14).

Proof of Lemma 6: Consider the original interval
algorithm which generates i.i.d. sequence with uniform
distribution over Y™ by using the input sequence with
the distribution P. For the original interval algorithm,
let f(az) and f(y) be the intervals corresponding to the
input sequence & € X* and output sequence y € Y7,
respectively. Since the scaling and translation in step.6
of the algorithm II does not affect the inclusion rela-
tionship between intervals, we have

I(®) C J(y) < I(=) C J(y).

This implies that any input sequence ® which generates
y € Y™ by the algorithm II also generates the same
y by the original interval algorithm, and vice versa.
Therefore, according to [3, (4.15)], for any y € Y*, we
have

2 =il = Y, l@l= Y, P(=),
2cT(Y) 2cT(Y)

which completes the proof. Q.E.D.

IEICE TRANS. 7?7, VOL.E84-77, NO.1 JANUARY 2001

8
Proof of Theorem 3: In what follows, fix ¢ as the tree T'. Then, according to Lemma 5, we have
t= [-n/1ogy(Pmaa +277)]. (25) SE)< Y, > P~ P@)
Then, according to (20), for any @ € X'?, we have yeor ¢+12¢€(;3()3é)1;_1
P(@) < (Pmas + 272 <277 (26) + 2 |P(2) - P(a)|
Beci:
Let 8 be the approximation error of the algorithm II. L&)=K-1
Since +aK—1M2_w+2(pmaz)K_1
" w)= Y Pe) (27) =2 2. [PE®-P@)
for any y € Y", combining (27), Lemma 3 and Lemma + Z Z |13(a3a) — P(za)|
6, we have Zor. ack
L(iB):K'—z
0 = Z Qn(y) 27" +aK—1M2_w+2(pmaz)K_1
yer <Y 1) - P(=)
o eEY™ ®eTY):
= Z Z P(®) — Z P(=) y H1<UB)<K -2
YY" (2T (Y) 2eT(Y) + Z |13(5'3) — P(z)|
<Y | Y (P - Pwe) s
yerr az(eig)gt): +(aK—2(pmaz)K_2 + aK—l(pmaa:)K_l)M2_w+2-
+ Z ‘ Z (ﬁ(w) - P(w))‘ By repeating the last deviation K — t + 2 times, we
Yeyr TeTY): obtain
L(B)Y)>t
< 3 |P@) - P(a)| S(K) < Y |P(=) - P(e)|
LTecXxt L?ig)i:t
+ 3| Y () - P@)| (28) = i
Yyeyr @eTY): +M2 Z a; (Pmaz)
LL)>t i=t
Next, we bound the second summation in the right < Z |}3(;g) — P(=)]
hand side of (28). For any integer K > 0, define S(X) Tt
as (&)=t
(pmaz)tM2n_w+2
A ~
SKES | Y (Pa) - PE))| T s
Yyeyn LeTY): . M2—'w+2
isad)an < Y 1P - P+
Ifxy---xg isaleaf, 1 --- g _1 must be anode. Hence, fag)i} Pmaz
5 here the second inequality comes from the relation
K) < P(z)- P W quaity
S(K) < ;n { az;(:yy |1P(@) ()] a; <2"—1(i=1,2,--+), and the last inequality comes
Y U B)CK -1 from (25). Substituting this into (28) and using Lemma
4, we have
SO A
2T, 6< Y |P@) - P@)|+ Jim S(K)
L(&)=K Zext K— o0
<Y) |P=)-P@) < Y |B(e) - P(a)]
Yyeyn ®eTY): Zext

t+1<(PL)<K -1

R R M2—'w+2

+ E A g |P(®a) — P(®a)|. + g A |P(®) — P(=)| + 1= poan
£ct: a€X Lt
L(L)=K-1 (&)=t

M2—'w+2

IN

For the generating tree T' corresponding to the algo- 2 Z |13(a3) — P(=)| +
rithm II, let a; denote the number of nodes at level 7 of Bext 1 - Pmae

UYEMATSU and LI: TWO ALGORITHMS FOR RANDOM NUMBER GENERATION

M2—'w+2
1- Pmaz ’
Again substituting (25) into (29), we finally obtain

6 < 1 [— w
o 1-— Pmaz 10g2(pmaa: + 2—'w+2)
x M2 +2, (30)

< M2Vt 4 (29)

which completes the proof of Theorem 3. Q.E.D.

The next theorem shows bounds on the expected
number E(L) of input length per one output symbol
for the algorithm II.

Theorem 4: Let L be the required length of input
sequence to generate a sequence of length n by using
the algorithm II. Then, if M2~ %2 < 1/2, the expected
value of L can be bounded as

n

—— < E(L)
H(P)+4
< n A+w—|—log2(MA—1)
-~ H(P)-¢ H(P)-2o
+ = (31)

(1 — Pmaz — 2—w+2)(H(P) - S)

where & = (w— 2)M2_“’+2.

Before we prove the theorem, we need some defini-
tions. Let P(als) (a € X, s € §) denote the probability
distribution of the finite-state source. Then, we define
Hppoo(P) and Hpyn (P) as

2

Hppoo(P) = max H(P(-]s)),

s€ES

>

Hppin(P) = min H(P(-]s)).

€S
Further, we define

~

pmaa:é max _P(als). (32)

The next lemma shows bounds on the expected length
of the input sequence for the original interval algorithm.

Lemma 7: Consider to generate a binary i.i.d. se-
quence of length n with uniform distribution from a
finite-state source over X with a set of state & by us-
ing the original interval algorithm. Then, the expected

x

length F(L) of the input sequence is bounded as

T; 7 < E(L)
n log,(2|S|(M — 1))
S Hon@®) T T Hoin(P)

1
+ = .
(1 - pmaa:)Hmin(P)

This lemma is a simple extension of [3, Theorem
4], and can be proven in a similar manner. So, we omit
the proof.

Proof of Theorem 4: The approximated input dis-
tribution P defined by (14) can be regarded as a distri-
bution of a finite state source with its state determined
by the width of total intervals, i.e. with a set of states
S={2v-t v 1l p1,...2¢ —1}.

Since the number of states in S is 2¥~!, by using
Lemma 7, we immediately have

n

— < E(L 34
T < EW (54)
< n_ +w—|—log2(]l/{—1)
- Hmzn(P) Hmzn(P)
1
+ — —. (35)
(1 - pmaa:)Hmin(P)

On the other hand, from Lemma 4 we have

3" |P(ale) - P(a)| < M2 42 (36)

acX

for any sequence & € X*. Since the sequence @ can
determine the state, combining this with Lemma 1, if
M27¥+2 < 1/2, we have

~

|Hpmin(P) — H(P)| < (w—2)M27¥*t2 =§. (37)
This implies that

Hpin(P) > H(P) =6 (38)
In a similar manner, we also have

Hpmao(P) < H(P) 44 (39)

According to (20), Pmaz < Pmaz + 1/2¥ 2. Combining
(35), (38), (39) and this, we obtain (31). Q.E.D.

For the algorithm I, according to Theorem 2,
the bounds on the expected length of input sequence
E(L) essentially depends on the approximation error 6.
Hence, the smaller approximation error results in the
tighter bounds on E(L). In contrast, for the algorithm
II, E(L) depends only on the word length w. Further,
for fixed n, by increasing w infinitely, (31) tends to

n

ey < B <
and we cannot bound E(L) from above. There also ex-
ists an optimum value of w which minimizes the upper
bound of (31). On the other hand, according to Lemma
7 (with |S| = 1, Hmin(P) = Hmaz(P) = H(P)), for the
original interval algorithm, the expected length of input

~

sequence E(L) can be bounded by

n log(2M)
H(P) H(P)

n

") < B(L) <

10

1
4+ - 40
(T~ P H(P) 4
Hence, it is still an open problem to obtain tighter
bounds or efficient algorithms such that the bounds on
E(L) approaches (40), as w — oo.

IV. Conclusion

In this paper, we have proposed two algorithms for the
random number generation using the integer arithmetic
of limited precision. We have analyzed the performance
of the algorithms for finite output length, and clarified
the bounds on the approximation error and the bounds
on the expected length of input sequence per one out-
put symbol. We are now exploring the practical per-
formance of the algorithm II, and some results were
reported in [7].

A cknowledgment

The authors are grateful to anonymous referees for their
helpful comments.

References

[1] T. S. Han, Information-Spectrum Methods in Information
Theory, Springer, 2002.

[2] T. M. Cover and J. A. Thomas, Elements of Information
Theory, New York: John Wiley & Sons, 1991.

[3] T. S. Han and M. Hoshi, “Interval algorithm for random
number generation,” IEEE Trans. Inform. Theory, vol.43,
no.2, pp.599-611, March 1997.

[4] C. B. Jones, “An efficient coding system for long source
sequences,” IEEE Trans. Inform. Theory, vol.IT-27, no.3,
pp-280-291, May 1981.

[5] I. Csiszér and J. Korner, Information Theory: Coding The-
orems for Discrete Memoryless System, Academic Press,
1981.

[6] T. S. Han, Information-Spectrum Methods in Information
Theory, Springer 2002.

[7] Y. Kanasugi, R. Matsumoto, and T. Uyematsu, “Verifica-
tion of approximate error probability of random number
generation algorithm implemented by using arithmetic of
limited precision,” Proc. of SITA '02, vol.1, pp.51-54, Dec.
2002.

Tomohiko Uyematsu received the
B.E.,M. E. and D. E. degrees from Tokyo
Institute of Technology in 1982, 1984 and
1988, respectively. From 1984 to 1992,
He was with the Department of Electri-
cal and Electronic Engineering of Tokyo
Institute of Technology, first as research
associate, next as lecturer, and lastly as
associate professor. From 1992 to 1997, he
was with School of Information Science of

IEICE TRANS. 7?7, VOL.E84-77, NO.1 JANUARY 2001

Japan Advanced Institute of Science and
Technology as associate professor. Since 1997, he returned to
Tokyo Institute of Technology as associate professor, and cur-
rently he is with the Department of Communications and Inte-
grated Systems as professor. In 1992 and 1996, he was a visiting
researcher at the Centre National de la Recherche Scientifique,
France and Delft University of Technology, Netherlands, respec-
tively. He received Shinohara Memorial Young Engineer Award
in 1989, and the Best Paper Award in 1993, 1996, and 2002 both
from IEICE. His current research interests are in the areas of in-
formation theory, especially Shannon theory and multi-terminal
information theory. Dr. Uyematsu is a member of IEEE.

Yuan Li was born in Shanghai, China
in 1977. She graduated from the Japanese
language center affiliated to Kawai Jyuku
in 1996. She received her B. E. in Interna-
tional Development of Eng. and M. E. in
the Department of Communications and
Integrated Systems from Tokyo Institute
of Technology in 2000 and 2002 respec-
tively.

