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On the Universality of Channel Decoders Constructed

from Source Encoders for Finite-State Channels
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SUMMARY A universal channel decoder for a given family
of channels is a decoder that can be designed without prior knowl-
edge of the characteristics of the channel. Nevertheless, it still
attains the same random coding error exponent as the optimal
decoder tuned to the channel. This paper investigates the dual-
ity between universal channel decoders and universal source en-
coders. First, for the family of finite-state channels, we consider
a sufficient condition for constructing universal channel decoders
from universal source encoders. Next, we show the existence of
a universal channel code that does not depend on the choice of
the universal decoder.
key words: channel coding, �nite-state channel, universal de-

coder, universal source code, reliability function

1. Introduction

The concept of universal channel decoders was first
proposed by Goppa [1]. Later, by combining a fixed
composition code with maximum mutual information
(MMI) decoder, Csiszár, Körner and Marton [2] (see
also [3]) proved the existence of a universal channel
code for the family of discrete memoryless channels
(DMC’s). In 1985, Ziv [4] proposed a universal decoder
for the family of unifilar finite-state channels (FSC’s),
i.e., FSC’s with deterministic transitions, by using the
Lempel-Ziv (LZ) incremental parsing [5]. As pointed
out in [6], Ziv’s work implicitly showed the existence of
a universal code for the family of unifilar FSC’s. Re-
cently, Lapidoth and Ziv [6] extended these results to
the general family of FSC’s. For this purpose, they
used the valuable results obtained by Feder and Lapi-
doth [7] who discovered the sufficient condition for the
existence of universal codes for a given family of chan-
nels. However, these results are meaningful only for
particular universal decoders such as MMI decoder or
Ziv’s decoder.

In this paper, we will introduce a new approach
to the universal channel coding problem that will lead
to the construction of an infinite number of new uni-
versal decoders from already existing universal source
encoders. First, we consider the family of FSC’s with
state-known-at-receiver, that is, channels of which state
is completely known at the receiver. We show a suffi-
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cient condition of the universal source encoder for finite-
state sources in order that they can be utilized as uni-
versal channel decoders for this family of channels. We
also show the existence of a universal channel encoder
which does not depend on the choice of a particular uni-
versal decoder. Then, we extend all these results to the
general family of FSC’s, i.e. the family of FSC’s with-
out any restriction except the initial state. Further,
we clarify that universal channel decoders can be con-
structed from universal codes for memoryless sources.
Throughout the paper, we assume that both logarithm
and exponent are understood to the base two.

2. Preliminaries

2.1 Basic Definitions

Consider a family of channels defined over the common
finite input alphabet X and the common finite output
alphabet Y . Let Θ denote an index set. In this pa-
per, we assume that the channel in use is unknown to
the receiver designer, who only knows that the chan-
nel belongs to the family of channels {pθ(y|x), θ ∈ Θ},
where the law pθ(y|x) maps every input sequence x =
(x1, · · · , xn) ∈ Xn to a corresponding probability law
on Yn. We also consider the codebook Cn with rate R
and code length n such as

Cn = {x(1), · · · ,x(�2nR	)} ⊂ Xn.

where �x	 denotes the maximum integer which is
smaller or equal to x. Generally, a decoder φ is a map-
ping

φ : Yn → {1, · · · , �2nR	},

and maps every received sequence y = (y1, · · · , yn) ∈
Yn to an index i (and by transition to x(i)), or declares
an error when no appropriate codeword exists.

Without loss of generality, assume that all the
codewords in a codebook Cn are used over the chan-
nel pθ(y|x) with equal probability. Then, the average
probability of decoding error for the decoder φ is given
by

Pθ,φ(error|C)

�
=

1
�2nR	

�2nR�∑
i=1

∑
{y:φ(y) �=i}

pθ(y|x(i)).
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Now, consider random coding, that is, the codebook Cn

is drawn randomly by choosing its codewords indepen-
dently and uniformly over the input set Bn. For the
channel pθ(y|x), P θ,φ(error) denotes the average (over
messages and codebooks) probability of error which is
incurred when such a random codebook is used over the
channel and the decoder is φ.

On the other hand, given the channel pθ(y|x) and
the codebook Cn, it is easy to see that for equally prob-
able messages the decoder that minimizes the average
probability of error is the maximum-likelihood (ML)
decoder. The ML decoder designed for the channel
pθ(y|x) declares that given the received sequence y,
the transmitted codeword is x(i) only if

pθ(y|x(i)) = max
1≤j≤�2nR�

pθ(y|x(j)). (1)

For the channel pθ(y|x), Pθ,ML(error|C) denotes the
average probability of error incurred when the code-
book C is used and ML decoding tuned to θ is em-
ployed. Similarly, we use the expression P θ,ML(error)
to denote the average (over messages and codebooks)
probability of error for a randomly chosen codebook.
We can now proceed by defining some terminology used
in [7].

Definition 1: A sequence of decoders {un} is said to
be random-coding weakly universal for the family of
channels {pθ(y|x) : θ ∈ Θ} and the input-set sequence
{Bn}, Bn ⊂ Xn if

lim
n→∞

1
n

log
P θ,un

(error)
P θ,ML(error)

= 0, ∀θ ∈ Θ. (2)

Furthermore, if the convergence in (2) is uniform over
Θ, i.e., if

lim
n→∞

sup
θ∈Θ

1
n

log
P θ,un

(error)
P θ,ML(error)

= 0,

the sequence of decoders {un} is said to be random-
coding strongly universal.

Definition 2: A sequence of decoders {un} is said to be
deterministic-coding weakly universal for the family of
channels {pθ(y|x) : θ ∈ Θ} and the input-set sequence
{Bn}, Bn ⊂ Xn, if there exists a sequence of codebooks
{Cn} with rate R, such that

lim
n→∞

1
n

log
Pθ,un

(error|Cn)
P θ,ML(error)

= 0, ∀θ ∈ Θ. (3)

Also, if the convergence in (3) is uniform over Θ, i.e., if

lim
n→∞

sup
θ∈Θ

1
n

log
P θ,un

(error|Cn)
P θ,ML(error)

= 0,

the sequence of decoders {un} is said to be
deterministic-coding strongly universal.

Throughout this paper, we will deal with the strong
version of universality. Further, we restrict ourselves to
the random coding where codewords are drawn uni-
formly over the input set Bn = Xn.

2.2 Strong Separable Family of Channels

First, we describe the concept of strong separable fam-
ily of channels introduced by Feder and Lapidoth [7].

Definition 3: A family of channels {pθ(y|x), θ ∈ Θ}
defined over common finite input and output alphabets
X ,Y is said to be strongly separable for the input sets
{Bn}, if there exists some M > 0 that upper-bounds
the error exponents in the family, i.e. that satisfies

lim sup
n→∞

sup
θ∈Θ

− 1
n

logP θ,ML(error) < M

such that for every δ > 0 and code length n, there
exists a subexponential number K(n,M, δ) of channels
{θ(n)

k }K(n,M,δ)
k=1 ⊂ Θ

lim
n→∞

1
n

logK(n,M, δ) = 0

that well approximate any θ ∈ Θ in the following sense:
For any θ ∈ Θ, there exists θ

(n)
k∗ ∈ Θ, 1 ≤ k∗ ≤

K(n,M, δ), so that

pθ(y|x) ≤ 2nδp
θ
(n)
k∗

(y|x),

∀(x,y) : pθ(y|x) > 2−n(M+log |Y|),

and

p
θ
(n)
k∗

(y|x) ≤ 2nδpθ(y|x),

∀(x,y) : p
θ
(n)
k∗

(y|x) > 2−n(M+log |Y|).

The next lemma shows that the family of all FSC’s,
which will be mainly treated in this paper, is strongly
separable.

Lemma 1 [7, Lemma 12]: Consider the family of all
FSC’s defined over common input, output, and state
alphabets X ,Y , S, and characterized by the initial state
s0 ∈ S and the transition probability

pθ(y|x) =
∑
s∈Sn

pθ(y, s|x, s0)

=
∑
s∈Sn

n∏
i=1

pθ(yi, si|xi, si−1), (4)

where s = (s1, s2, · · · , sn) ∈ Sn denotes the state se-
quence of the channel and S is the finite set of states.
Then, this family of channels is strongly separable for
any input sets {Bn}.

The next lemma clarifies the relation between
random-coding strong universality and deterministic-
coding strong universality for the strongly separable
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family of channels.

Lemma 2 [7, Lemma 6]: If the family of channels
{pθ, θ ∈ Θ} is strongly separable then random-coding
strong universality implies deterministic-coding univer-
sality.

By combining above two lemmas, we can conclude
that for the family of FSC’s random-coding strong uni-
versality implies deterministic-coding universality. In
the following sections, we often use this observation to
simplify the proof.

3. Construction of Universal Decoders for
the Family of FSC’s with State-Known-at-
Receiver

Before investigating the general case of FSC’s in Sect. 4,
we will treat the special case of FSC with state-known-
at-receiver. This is because the proof is more insightful
and much simpler by virtue of the theory of type [3]. It
should be noted that this family of channels is still very
large and includes a considerable number of commonly
used channels such as DMC’s and channels subject to
intersymbol interference.

For this family of channels, we assume that the
state of the channel is known to the receiver. In other
words, we assume that the finite set of states S, the
initial state s0 ∈ S, the next-state function q : Y×S →
S, and

si = q(yi, si−1) for i = 1, · · · , n

are given to the receiver. By this fact, the transition
probability can be reduced to the form

pθ(y|x) =
n∏

i=1

pθ(yi|xi, si−1), (5)

where si ∈ S (i = 1, · · · , n) denotes the state of the
channel θ ∈ Θ at the ith instant.

Next, we define the asymptotical optimality of a se-
quence of source codes for finite-state sources (FSS’s).
In what follows, for x = (x1, x2, · · · , xn) and y =
(y1, y2, · · · , yn), we use the notation (x,y) to mean
(x1y1, x2y2, · · · , xnyn), and we may write (x,y) ∈ (X ×
Y)n.

Definition 4: For a given next state function q, a
sequence of binary source codes {fn} (where fn : (X ×
Y)n → {0, 1}∗) is said to be asymptotically optimum
for FSS’s if there exists a sequence {εn} such that εn ≥
0, lim

n→∞
εn = 0 and

�(fn(x,y)) ≤ nH(xy|s) + nεn,

∀(x,y) ∈ (X × Y)n (6)

where �(·) denotes the length function, s =
(s0, s1, · · · , sn−1) denotes the sequence of states, and

H(xy|s) is the conditional empirical entropy deter-
mined by the joint type of sequences defined as

Pxy(a, b, s)
�
=

1
n
|{i : (xi, yi, si−1) = (a, b, s), 1 ≤ i ≤ n}|,

∀(a, b, s) ∈ X × Y × S.

It should be noted that H(xy|s) is the empirical en-
tropy of the unifilar source when the next-state func-
tion q and the initial state s0 are known. Hence, it
is easy to see that almost all universal source codes
for FSS’s, such as Lempel-Ziv 78 code [5] and adaptive
arithmetic codes [8], [9] using a model determined by q
are asymptotically optimum.

Also, in order to prove our theorem, we require
that the length of the codeword satisfies the condition

�(fn(x,y)) ≥ nH(xy|s), ∀(x,y) ∈ (X × Y)n.

(7)

However, this requirement is not significant because
even if some codewords do not satisfy it, we can al-
ways modify their length by adding some 0’s at the end
so that (7) is satisfied. We can easily show that adap-
tive arithmetic codes [8], [9] using a model determined
by q satisfy this condition. Also, we can verify that (7)
holds for any regular code [8] satisfying

�(fn(x,y))≥− logPn(x,y), ∀(x,y)∈(X × Y)n

where Pn(x,y) is some probability function defining
the FSS.

The next definition describes the method for con-
structing a sequence of decoders {f̂n} from a sequence
of asymptotically optimum source codes {fn}.
Definition 5: For a codebook Cn ⊂ Xn and a given
received sequence y ∈ Yn, the decoder {f̂n} declares
that the transmitted codeword is x(i) only if

�(fn(x(i),y)) ≤ �(fn(x(j),y)), ∀j �= i. (8)

In other words, this decoder outputs the codeword that
produces the shortest codeword when encoded jointly
with the received sequence. This decoder is universal
since it does not require any knowledge of the channel.

The next theorem compares the performance of the
proposed decoder with the optimal performance obtain-
able by the ML decoder.

Theorem 1: For a family of FSC’s characterized
by (5), the sequence of universal decoders {f̂n} are
random-coding strongly universal, i.e.

lim
n→∞

sup
θ∈Θ

1
n

log
P θ,f̂n

(error)

P θ,ML(error)
= 0, (9)

and deterministic-coding strongly universal, i.e. there
exists a sequence of deterministic codebooks {Cn} with
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rate R so that

lim
n→∞

sup
θ∈Θ

1
n

log
Pθ,f̂n

(error|Cn)

P θ,ML(error)
= 0. (10)

Remark 1: The difference between Ziv’s result [4,
Sect. II D] and Theorem 1 can be summarized as fol-
lows: (i) Ziv dealt with the family of DMC’s, but The-
orem 1 deals with more general family of channels, i.e.
the family of FSC’s with state-known-at-receiver. (ii)
Ziv only considered the MMI decoder, but Theorem 1
shows that almost all universal source encoders can be
used as channel decoder. Hence, Theorem 1 enriches
the variety of universal channel decoders.

Before we prove the theorem, we first introduce a
very important lemma proved by Ziv [4].

Lemma 3 [4, Corollary 1]: For any channel over com-
mon finite input and output alphabet X , Y where the
codewords are uniformly chosen from the input set
Bn ⊂ Xn, we have

P θ,f̂n
(error)

2P θ,ML(error)
≤ max

x∈Bn,y∈Yn

|Sf̂n
(x,y)|

|SML(x,y)| + 1,

where

Sf̂n
(x,y)

�
= {x̂ ∈ Bn : �(fn(x̂,y)) ≤ �(fn(x,y))},

SML(x,y)
�
= {x̂ ∈ Bn : pθ(y|x̂) ≥ pθ(y|x)}.

Proof of Theorem 1: According to the results of
Feder and Lapidoth described in Sect. 2.2, we only
prove the first half of Theorem 1, i.e. the random-
coding universality. In what follows, all the informa-
tion measures like the empirical entropy and the condi-
tional empirical entropy that are induced by the joint
type Pxy will be denoted by H(xy), H(x|ys), etc.

For any two pairs of sequences (x,y) and (x̂,y)
both in (X × Y)n, Pxy = Px̂y implies pθ(y|x) =
pθ(y|x̂). Hence,

|SML(x,y)| ≥ |{x̂ ∈ Xn : Px̂y = Pxy}|
(a)
=

∏
b∈Y,s∈S

{n
∑

a∈X Pxy(a, b, s)}!∏
a∈X (nPxy(a, b, s))!

(b)

≥ exp{nH(x|ys)}
(n+ 1)|X ||Y||S| , (11)

where (a) comes from the fact that the next state si

is a function of yi and si−1, and (b) comes from the
standard method of type [3].

On the other hand, for the given class of channels,
the output sequence y ∈ Yn is known to the receiver
and the sequence of states can be determined uniquely.
This implies that H(y|s) does not depend on x. From

(6), (7) andH(xy|s) = H(x|ys)+H(y|s), we can show
that �(fn(x̂,y)) ≤ �(fn(x,y)) implies that

H(x̂|ys) ≤ H(x|ys) + εn.

By using these relations, we can bound |Sf̂n
(x,y)| as

follows

|Sf̂n
(x,y)|

= |{x̂ ∈ Xn : �(fn(x̂,y)) ≤ �(fn(x,y))}|
≤ |{x̂ ∈ Xn : H(x̂|ys) ≤ H(x|ys) + εn}|
≤ (n+ 1)|X ||Y||S|exp{n(H(x|ys) + εn)}. (12)

Combining (11) and (12), we obtain for any (x,y)

1
n

log

(
|Sf̂n

(x,y)|
|SML(x,y)| + 1

)

(c)

≤ 1
n

log
{
(n+ 1)2|X ||Y||S| exp(nεn) + 1

}
=

1
n

+ εn +
2|X ||Y||S| log(n+ 1)

n
,

where (c) comes from the inequality log(1 + x) ≤ 1 +
log x for x ≥ 1. This upper bound vanishes as n tends
to infinity, and does not depend on θ ∈ Θ. Hence, by
using Lemma 3, the first half of Theorem 1 is obtained.

Q.E.D.

Next, we strengthen our result by showing the ex-
istence of a universal codebook (or encoder) which does
not depend on a particular universal decoder.

Theorem 2: Consider a family of channels charac-
terized by (5). For a given sequence {εn} such that
εn ≥ 0 and limn→∞ εn = 0, there exists a sequence
of codebooks {Cn} with rate R such that all sequences
of universal decoders {f̂n} obtained by the sequence of
universal source codes {fn} satisfying (6) for the given
{εn} above are deterministic-coding strongly universal,
i. e.

lim
n→∞

sup
θ∈Θ

1
n

log
Pθ,f̂n

(error|Cn)

P θ,ML(error)
= 0, (13)

and this sequence of codebooks {Cn} does not depend
on the sequence of universal decoders {f̂n}.
Proof of Theorem 2: Let us consider the universal
threshold decoder {un} defined by the following decod-
ing rule: For a codebook Cn ⊂ Xn, the given nonnega-
tive sequence {εn} and a received sequence y ∈ Yn, the
threshold decoder {un} declares that the transmitted
codeword is x(i) only if

H(x(i)y|s) ≤ H(x(j)y|s) − εn, ∀j �= i.

Then, in a manner similar to the proof of [4, Corollary
1], we have

P θ,un
(error)

2P θ,ML(error)
≤ max

x∈Bn,y∈Yn

|Sun
(x,y)|

|SML(x,y)| + 1,
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where

Sun
(x,y)

�
= {x̂∈Xn : H(x̂y|s)≤H(xy|s)+εn}.

Hence, in a manner similar to the proof of Theorem 1,
we can show that there exists a sequence of codebooks
{Cn} such that

lim
n→∞

sup
θ∈Θ

1
n

log
Pθ,un

(error|Cn)
P θ,ML(error)

= 0. (14)

This implies that the sequence of decoders {un} is
deterministic-coding universal.

On the other hand, for any sequence of universal
decoders {f̂n} obtained by the sequence of asymptoti-
cally optimum source codes {fn} satisfying (6) and (7),
H(x(i)y|s) ≤ H(x(j)y|s)− εn implies �(fn(x(i),y)) ≤
�(fn(x(j),y)). Hence, we have

{y ∈ Yn : un(y) = i} ⊂ {y ∈ Yn : f̂n(y) = i}
∀i ∈ {1, · · · , �2nR	}.

Therefore,

Pθ,f̂n
(error|Cn)

=
1

�2nR	

�2nR�∑
i=1

∑
{y:f̂n(y) �=i}

pθ(y|x(i))

≤ 1
�2nR	

�2nR�∑
i=1

∑
{y:un(y) �=i}

pθ(y|x(i))

= pθ,un
(error|Cn).

Combining this with (14), we obtain (13). Q.E.D.

4. Construction of Universal Decoders for the
Family of General FSC’s

In this section, we will consider the general family of
FSC’s which are characterized by the initial state s0 ∈
S and the transition probability (4).

In Sect. 3, we defined the asymptotical optimality
for FSS’s, which turned out to be a sufficient condition
to construct universal decoders for the family of FSC’s
with state-known-at-receivers. Similarly, in order to
show a sufficient condition to construct the universal
decoders for the general family of FSC’s, we define the
asymptotical optimality of source codes for memoryless
sources in a little bit different manner as Definition 4.

Definition 6: A sequence of binary source codes {fn}
(fn : (X × Y)n → {0, 1}∗) is said to be asymptotically
optimum if there exists a sequence {εn(|X × Y|)} such
that εn(|X × Y|) ≥ 0, lim

n→∞
εn(|X × Y|) = 0 and

|�(fn(x,y))− nH(xy)| ≤ nεn(|X × Y|),
∀(x,y) ∈ Xn × Yn (15)

where H(xy) is the joint empirical entropy determined

by the joint type of sequences defined as

Pxy(a, b)
�
=

1
n
|{i : (xi, yi) = (a, b), 1 ≤ i ≤ n}| ,

∀(a, b) ∈ X × Y . (16)

It is easy to see that almost all universal source
codes for memoryless sources, such as Lynch-Davisson
code [10], [11], adaptive arithmetic codes [8], [9] are
asymptotically optimum. It should be emphasized that
in Sect. 3 we treated the source codes for FSS’s, but
now we are considering the source codes for memoryless
sources. Further, the sequence of source codes satisfy-
ing both (6) and (7) satisfies (15) as well. Hence, the
class of source codes treated here is much wider than
that in Sect. 3.

In what follows, we assume that k divides n and
we parse x, x′ ∈ Xn, s ∈ Sn and y ∈ Yn into n/k
blocks of length k. We also denote the ith block of
x that starts at the (i − 1)k + 1th position and ends
at the ikth as x̃i where i = 1, · · · , n/k. We also
assume that the source code fn encodes sequences on
the extended alphabet (X × Y)k. When the sequence
(x,y) ∈ (X × Y)n is encoded by fn over the extended
alphabet (X ×Y)k, we denote the corresponding code-
word as fn(x,y, k). Further, for the extended alphabet
(X × Y)k, the asymptotically optimality (15) can be
translated to∣∣∣�(fn(x,y, k))− n

k
H(xy, k)

∣∣∣ ≤ n

k
εn/k(|X × Y|k),

∀(x,y) ∈ (X × Y)n (17)

where

H(xy, k)
�
= −

∑
x̃∈Xk

∑
ỹ∈Yk

Pxy(x̃, ỹ) logPxy(x̃, ỹ) (18)

is the empirical entropy associated with the joint type

Pxy(x̃, ỹ)
�
=

k

n

∣∣∣{i : (x̃i, ỹi) = (x̃, ỹ), 1 ≤ i ≤ n

k

}∣∣∣ ,
∀(x̃, ỹ) ∈ X k × Yk. (19)

From now on, we assume that the subblock length
k is specified depending on the code length n and sat-
isfies three conditions

lim
n→∞

k = ∞,

lim
n→∞

|X × Y|k log(n/k)
n

= 0,

lim
n→∞

ε(n, k) = 0,




(20)

where

ε(n, k)
�
=
εn/k(|X × Y|k)

k
.

Next, we construct a sequence of universal de-
coders {f̂n} from a given sequence of asymptotically
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optimum source codes {fn} for memoryless sources.

Definition 7: For a codebook Cn ⊂ Xn and a given
received sequence y ∈ Yn, the decoder {f̂n} declares
that the transmitted codeword is x(i) only if

�(fn(x(i),y, k)) ≤ �(fn(x(j),y, k)), ∀j �= i. (21)

The performance obtained for this sequence of uni-
versal decoders is clarified in Theorem 3 and Theorem
4.

Theorem 3: For the family of FSC’s characterized by
(4), the sequence of decoders {f̂n} is random-coding
strongly universal and deterministic-coding strongly
universal. Thus,

lim
n→∞

sup
θ∈Θ

1
n

log
P θ,f̂n

(error)

P θ,ML(error)
= 0, (22)

and there also exists a sequence of codebooks {Cn} with
rate R so that

lim
n→∞

sup
θ∈Θ

1
n

log
Pθ,f̂n

(error|Cn)

P θ,ML(error)
= 0. (23)

Remark 2: In [6, Theorem 1], Lapidoth and Ziv
showed that Ziv’s decoder [4] is deterministic-coding
universal for the family of FSC’s. On the other
hand, Theorem 3 shows that decoders constructed from
almost all universal source encoders for memoryless
sources are deterministic-coding universal for the fam-
ily of FSC’s. This together with Theorem 1 drastically
enriches the variety of universal channel decoders.

Proof of Theorem 3: As described in Sect. 2.2, it
is sufficient to prove the random-coding universality of
the proposed decoder for the family of FSC’s.

We first introduce a threshold decoder that is com-
parable to the ML decoder. For the channel pθ(y|x)
characterized by (4), a threshold decoder φTH with
threshold sequence {αn}, αn ≥ 1, is defined as follows:
For a received sequence y, the threshold decoder φTH

declares that codeword x(i) is transmitted only if

pθ(y|x(i)) ≥ αnpθ(y|x(j)), for j �= i,

and declares an error if no such codeword exists.

Lemma 4 [6, Lemma 2]: For the threshold decoder
φTH , if the threshold sequence satisfies

lim
n→∞

1
n

logαn = 0, (24)

we have

lim
n→∞

sup
θ∈Θ

1
n

log
P θ,φT H

(error)
P θ,ML(error)

= 0. (25)

Note that the threshold decoder is not universal
and is, in general, inferior to the ML decoder. However,

Lemma 4 shows that when the threshold sequence satis-
fies the condition (24), the threshold decoder is asymp-
totically optimum. Hence, in order to prove Theorem
3, we only need to show that the proposed universal
decoder is asymptotically as good as the threshold de-
coder. In other words, we need to prove

lim
n→∞

sup
θ∈Θ

1
n

log
P θ,f̂n

(error)

P θ,φT H
(error)

= 0. (26)

To this end, in a manner similar to the proof of [4,
Corollary 1], we immediately have

P θ,f̂n
(error)

2P θ,φT H
(error)

≤ 1 + max
x∈Xn,y∈Yn

|Sf̂n
(x,y)|

|STH(x,y)| ,

(27)

where

Sf̂n
(x,y)

= {x̂ ∈ Xn : �(fn(x̂,y, k)) ≤ �(fn(x,y, k))},

STH(x,y) = {x̂ ∈ Xn : pθ(y|x̂) ≥ α−1
n pθ(y|x)}.

The next step is to bound |STH(x,y)| and
|Sf̂n

(x,y)|. This is presented in Lemma 5 and Lemma
6, respectively.

Lemma 5: For the threshold decoder with the thresh-
old sequence αn = |S|n/k, we have

1
n

log |STH(x,y)| ≥ 1
k
H(x|y, k) − 1

k
log |S|2e, (28)

where H(x|y, k) is the conditional empirical entropy
defined as

H(x|y, k)
�
= −

∑
x̃∈Xk

∑
ỹ∈Yk

Pxy(x̃, ỹ) logPxy(x̃|ỹ), (29)

while

Pxy(x̃|ỹ)
�
=

Pxy(x̃, ỹ)∑
x̃∈Xk Pxy(x̃, ỹ)

,

and Pxy(x̃, ỹ) is defined in (19).

Lemma 6: For the sequence of decoders {f̂n} obtained
from the sequence of asymptotically optimum source
codes defined in Definition 6, we have

1
n

log |Sf̂n
(x,y)| ≤ 1

k
H(x|y, k) + 2ε(n, k)

+
2
k

+ |X × Y|k
(

log(n/k) + 1
n

)
. (30)

The proofs of these lemmas are shown in Appendix.

Remark 3: Lapidoth and Ziv proved similar lemmas
associated with Ziv’s decoder [6, Lemma 4 and Lemma
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3], where the term of conditional empirical entropy
H(x|y, k)/k in (28) and (30) is replaced by the Ziv’s
decoding function u(x,y) (see [6, Eq. (11)] for its defini-
tion), and the other terms in right hand side of (28) and
(30) are replaced by functions of O(log logn/ logn).

We are now in a position to prove Theorem 3.
First, by combining (28) and (30), we can show that
for all (x,y)

1
n

log

(
1 +

|Sf̂n
(x,y)|

|STH(x,y)|

)

≤ 1
n

+ 2ε(n, k) +
2
k

+ |X × Y|k
(

log(n/k) + 1
n

)

+
1
k

log |S|2e.

In this inequality, the right hand side does not depend
on θ ∈ Θ and vanishes as n tends to infinity from the
assumption of k (20). By combining this with (27), we
obtain (26). Q.E.D.

The next theorem is an extended version of Theo-
rem 2.

Theorem 4: Consider a family of FSC’s characterized
by (4). For a given sequence {εn} such that εn ≥ 0 and
limn→∞ εn = 0, there exists a sequence of codebooks
{Cn} with rate R such that all sequences of universal
decoders {f̂n} obtained by the sequence of universal
source codes {fn} satisfying (15) and ε(n, k) ≤ εn are
deterministic-coding strongly universal. Thus,

lim
n→∞

sup
θ∈Θ

1
n

log
Pθ,f̂n

(error|Cn)

P θ,ML(error)
= 0. (31)

It should be noted that this sequence of codebooks
{Cn} does not depend on the sequence of universal de-
coders {f̂n}.
Proof of Theorem 4: Consider the following univer-
sal decoder {ũn}: For a codebook Cn ⊂ Xn and a given
received sequence y ∈ Yn, the universal decoder {ũn}
declares that the transmitted codeword is x(i) only if

n

k
H(x(i)y, k) <

n

k
H(x(j)y, k) − 2εn, ∀j �= i.

where H(x(i)y, k) is defined in (18).
First, we will prove the strong universality of the

sequence of decoders {ũn}. We first consider the set

Sũn
(x,y) =

{
x̂ ∈ Xn :

n

k
H(x(i)y, k) <

n

k
H(x(j)y, k) + 2εn

}
.

Then, in a method similar to the proof of Lemma 6, we
have

1
n

log |Sũn
(x,y)|

≤ 1
k
H(x|y, k) + 2εn

+
2
k

+ |X × Y|k
(

log(n/k) + 1
n

)
.

Combining this result with Lemma 5 in a manner simi-
lar to the proof of Theorem 3, we can show that {ũn} is
random-coding universal. Since random-coding univer-
sality implies deterministic-coding universality for the
family of FSC’s, there exists a sequence of deterministic
codebooks {Cn} such that

lim
n→∞

sup
θ∈Θ

1
n

log
Pθ,ũn

(error|Cn)
P θ,ML(error)

= 0

for a sequence of universal decoders {ũn}.
On the other hand, when ũn(y) = i, for any uni-

versal source code fn satisfying ε(n, k) ≤ εn, we have

�(fn(x(i),y, k)) ≤ n

k
H(x(i)y, k) + εn

<
n

k
H(x(j)y, k) − εn

≤ �(fn(x(j),y, k)), ∀j �= i

which implies that f̂n(y) = i. Therefore, in a manner
similar to the proof of Theorem 2, whatever the decoder
f̂n is, we obtain

Pθ,f̂n
(error|Cn) ≤ pθ,un

(error|Cn).

Since the sequence of codebooks {Cn} is determined by
{ũn}, all the decoders {f̂n} associated with the source
encoders {fn} are also deterministic-coding universal.

Q.E.D.

5. Conclusion

We have considered the relationship between source
coding and channel coding. We have found a suffi-
cient condition for universal source encoders to be uti-
lized as universal channel decoders. With regard to the
abundance of literature concerning universal source en-
coders, this enables us to construct a considerable num-
ber of new universal channel decoders. Next, we have
shown the existence of a universal channel encoder that
does not depend on the choice of a universal decoder
for a family of FSC’s.
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Appendix: Proof of Lemma 5

The proof is similar to the proof of [6, Lemma 4]. One
significant difference is that, as mentioned earlier, we
first divide the input, output and state sequences into
blocks of fixed length k.

For any state sequence, let p(y, σ|x, s0) denote the
probability that for a given initial state s0 and input
sequence x, we observe the output sequence y together
with the states sik = σ(i) for all i ∈ {1, 2, · · · , n/k}.
Then, we have

p(y, σ|x, s0)

=
n/k∏
m=1

pθ(ỹm, σ(m)|x̃m, σ(m− 1)), (A· 1)

where σ(0) = s0 and p(ỹm, σ(m)|x̃m, σ(m − 1)) is the
probability that the channel will be in the state σ(m)
at the (n/k)th instant and will produce the output ỹm

given that the channel is in the state σ(m − 1) and is
fed with the input x̃m. Since there are |S|n/k kinds of
state sequences, we can easily see that there exists a
sequence σ0 ∈ Sn/k that satisfies

p(y, σ0|x, s0) ≥
1

|S|n/k
pθ(y|x). (A· 2)

On the other hand, let x′ be the permutation of x
such that for some 1 ≤ m < m′ ≤ k/n, it satisfies

(i) ỹm = ỹm′

(ii) σ0(m− 1) = σ0(m′ − 1)
(iii) σ0(m) = σ0(m′).

For such a permutation, it is clear from (A· 1) that

p(y, σ0|x′, s0) = p(y, σ0|x, s0). (A· 3)

Moreover, we can lower bound the transition probabil-
ity as follows

pθ(y|x′) =
∑

s̃∈Sn/k

p(y, s̃|x′, s0)

(a)

≥ p(y, σ0|x′, s0)
(b)
= p(y, σ0|x, s0)
(c)

≥ α−1
n pθ(y|x),

where (a) is obvious because we consider only one spe-
cific state sequence, (b) follows from (A· 3), and (c)
comes from (A· 2). This implies that x′ ∈ STH(x,y).

The next step is to count how many such permu-
tations (satisfying (i), (ii) and (iii)) exist. Before that,
we find it useful to define c(x̃, ỹ, s, s′) as the number
of joint occurrences of x̃ ∈ X k and ỹ ∈ Yk that end in
state s and are preceded by state s′. That is,

c(x̃, ỹ, s, s′)
�
= |{i ∈ {1, · · · , n/k} : x̃i = x̃,

ỹi = ỹ, σ0(i) = s, σ0(i− 1) = s′}| .

For easier notation, we also define

c(x̃, ỹ)
�
=

∑
(s,s′)∈S2

c(x̃, ỹ, s, s′) =
n

k
Pxy(x̃, ỹ),

c(ỹ)
�
=
∑
x̃∈Xk

c(x̃, ỹ) =
n

k

∑
x̃∈Xk

Pxy(x̃, ỹ).

Then, by restricting our attention to the permutations
mentioned above (which are all included in STH(x,y)),
we have

|STH(x,y)|

≥
∏
ỹ∈Yk

∏
(s,s′)∈S2

{
∑

x̃∈Xk c(x̃, ỹ, s, s′)}!∏
x̃∈Xk c(x̃, ỹ, s, s′)!

.

Taking the logarithms of both sides and using Stirling’s
formula, we obtain

log (|STH(x,y)|)

≥
∑
ỹ

∑
(s,s′)

[
log
{∑

x̃

c(x̃, ỹ, s, s′)
}
!

−
∑
x̃

log c(x̃, ỹ, s, s′)!

]

≥
∑
ỹ

∑
(s,s′)

∑
x̃

c(x̃, ỹ, s, s′)

×
{

log
∑
x̃

c(x̃, ỹ, s, s′) − log e

}

−
∑
ỹ

∑
(s,s′)

∑
x̃

c(x̃, ỹ, s, s′) log c(x̃, ỹ, s, s′)

(a)

≥
∑
ỹ

∑
(s,s′)

∑
x̃

c(x̃, ỹ, s, s′) log
∑
x̃

c(x̃, ỹ, s, s′)
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−
∑
ỹ

∑
x̃

c(x̃, ỹ) log c(x̃, ỹ) − n

k
log e

=
∑
ỹ

c(ỹ)
∑
(s,s′)

∑
x̃
c(x̃, ỹ, s, s′)
c(ỹ)

×
[
log
∑

x̃
c(x̃, ỹ, s, s′)
c(ỹ)

+ log c(ỹ)

]

−
∑
ỹ

∑
x̃

c(x̃, ỹ) log c(x̃, ỹ) − n

k
log e

(b)

≥
∑
ỹ

c(ỹ)

∑
(s,s′)

∑
x̃
c(x̃, ỹ, s, s′)

c(ỹ)

× log

∑
(s,s′)

∑
x̃
c(x̃, ỹ, s, s′)

c(ỹ)× |S|2

+
∑
ỹ

c(ỹ) log c(ỹ)

−
∑
ỹ

∑
x̃

c(x̃, ỹ) log c(x̃, ỹ) − n

k
log e

=
∑
ỹ

[
− c(ỹ) log |S|2 + c(ỹ) log c(ỹ)

−
∑
x̃

c(x̃, ỹ) log c(x̃, ỹ)
]
− n

k
log e

=
∑
ỹ

[
c(ỹ) log c(ỹ) −

∑
x̃

c(x̃, ỹ) log c(x̃, ỹ)

]

−n
k

log |S|2e

=
n

k


∑

ỹ

c(ỹ)
n/k

(
log

c(ỹ)
n/k

+ log
n

k

)
− log |S|2e

−
∑
ỹ

∑
x̃

c(x̃, ỹ)
n/k

(
log

c(x̃, ỹ)
n/k

+ log
n

k

)
=

n

k
H(x|y, k) − n

k
log |S|2e,

where (a) comes from the fact c(x̃, ỹ, s, s′) ≤ c(x̃, ỹ),
and (b) comes from Jensen inequality. Q.E.D.

Proof of Lemma 6

Consider the lossless source coding problem of x̂ ∈ Xn,
when the side information y ∈ Yn is known at both
encoder and decoder. If we use the Shannon-Fano code
based on the conditional probability

Px̂y(x̃|ỹ) =
Px̂y(x̃, ỹ)∑

x̃∈Xk Px̂y(x̃, ỹ)
,

the codelength L(x̂|y) for x̂ satisfies

1
n
L(x̂|y) ≤ 1

k
H(x̂|y, k) +

2
k

+|X × Y|k
(

log(n/k) + 1
n

)
. (A· 4)

Let H(y, k) denote the empirical entropy associated
with the empirical distribution

Py(ỹ) =
∑
x̃∈Xk

Pxy(x̃, ỹ), ∀ỹ ∈ Yk.

Since H(y, k) does not depend on x̂ ∈ Xn, we can see
that H(x̂y, k) = H(x̂|y, k) + H(y, k). Hence, (A· 4)
can be written as

1
n
L(x̂|y) ≤ 1

k
H(x̂y, k) − 1

k
H(y, k) +

2
k

+|X × Y|k
(

log(n/k) + 1
n

)
. (A· 5)

On the other hand, �(fn(x̂,y, k)) ≤ �(fn(x,y, k))
implies

H(x̂y, k) ≤ H(xy, k) + 2ε(n, k)× k.

By substituting this into (A· 5), we obtain

1
n
L(x̂|y) ≤ 1

k
H(xy, k) + 2ε(n, k) − 1

k
H(y, k)

+
2
k

+ |X × Y|k
(

log(n/k) + 1
n

)

=
1
k
H(x|y, k) + 2ε(n, k) +

2
k

+|X × Y|k
(

log(n/k) + 1
n

)
.

Therefore, for a given (x,y), the number of sequences
x̂ ∈ Xn satisfying �(fn(x̂,y, k)) ≤ �(fn(x,y, k)) can be
upper bounded by

exp
{
n

[
1
k
H(x|y, k) + 2ε(n, k) +

2
k

+|X × Y|k
(

log(n/k) + 1
n

)]}
.

This implies that

|Sf̂n
(x,y)| ≤ exp

{
n

[
1
k
H(x|y, k) + 2ε(n, k) +

2
k

+|X × Y|k
(

log(n/k) + 1
n

)]}
,

which completes the proof. Q.E.D.
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