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Abstract

This paper proposes an explicit construction of fixed length codes for Slepian-
Wolf source networks. The proposed code is linear, and has two-step encoding
and decoding procedures similar to the concatenated code used for channel coding.
Encoding and decoding of the code can be done in a polynomial order of the block
length. The proposed code can achieve arbitrary small probability of error for
ergodic sources with finite alphabets, if the pair of encoding rates is in the achievable
region. Further, if the sources are memoryless, the proposed code can be modified
to become universal and the probability of error vanishes exponentially as the block

length tends to infinity.
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I. Introduction

The separate coding problem for correlated sources has been first investigated by
Slepian and Wolf [1], and the coding problem for Slepian-Wolf (SW) source network
is the most fundamental source coding problem in the areas of multi-terminal in-
formation theory. After the original proof of coding theorem by Slepian and Wolf,
Cover [2] extended the proof of the coding theorem for ergodic sources by using bin
coding, while Ahlswede and Korner [3] gave an alternative proof by using construc-
tive algorithm. However, these proofs do not suggest any explicit construction of
codes, since they require some searches for code constructions. Further, the com-
plexity of encoding/decoding for these codes increases exponentially as the block
length tends to infinity. Hence, the problem of explicitly constructing codes for SW
network with low cost of encoding and decoding still remains open. The construc-
tion of such codes is not only interesting in its own right but also very important
from the standpoint of practical communications, since the coding problem for SW
network is strongly related to many kinds of problems in multi-terminal information
theory. For example, a multiple access code can be derived from a code constructed
for SW network [4, Proof of Theorem 3.2.3]. Further, a code for SW network can
also be applied to the common randomness problem, i.e. to generate a common
random key for two users by using correlated sources and communication over pub-
lic channel without letting an eavesdropper obtain information about the generated

key [5, Proof of Proposition 1].



On the other hand, in the areas of channel coding, Delsarte and Piret [6] succeed-
ed to explicitly construct a channel code whose decoding error probability decreases
exponentially with the code length for a class of regular channels. They apply
Justesen’s idea of “variable concatenation” [7] to provide an algebraic construction
of encoders. In this paper, we apply the idea of Delsarte and Piret to construct ex-
plicit codes for the SW source network. Our proposed code has two-step encoding
and decoding procedures similar to the concatenated code for channel coding [8].
In the first step of encoding, the block of source symbols is divided into subblocks,
and each subblock is encoded by a distinct linear code. Here, a set of linear codes
has the property that the average probability of error over the set vanishes as the
block length tends to infinity. In the second step of encoding, the total block is
again encoded into a syndrome of an algebraic geometry code which is a class of
linear error correcting codes. In the decoding, linear codes are decoded first by
using typical set decoding [2]. Then, by using linearity of the algebraic geometry
code, we can obtain the syndrome which corresponds to the errors caused by the
codes in the first step. These errors can be easily corrected by using the procedure
for error correction of the algebraic geometry code. The proposed code can achieve
arbitrary small probability of error for ergodic sources, if the pair of encoding rates
is in the achievable region. Lastly, we deal with the case where the sources are
memoryless. In such a case, if we employ the minimum entropy decoding instead of
the typical set decoding, the proposed code becomes universal and its decoding as

well as encoding do not depend on the generic distribution of the sources. Further,



we clarify that the probability of error vanishes exponentially as the block length
tends to infinity.

It should be noted that Csiszar [9] showed that an inner point of the achievable
region can be achieved by a linear code. However, since he employed random coding
technique to construct linear codes, his construction requires the computational
complexity of exponential order of the block length in order to obtain a good linear
code. Further, the decoding complexity of his code is of exponential order of the
block length. On the contrary, the construction of our code as well as its decoding
can be done within the polynomial order of the block length. Hence, our code is

much more efficient than that proposed by Csiszar.

II. Preliminaries

a. Slepian-Wolf coding problem

Following Slepian and Wolf [1], we consider the problem of separate encoding and
joint decoding of two ergodic sources (X,Y) with finites alphabets A and ). Sup-
pose that the joint distribution of the sources is described by Q.

Definition 1 (Codes for Slepian- Wolf networks): A code of block length n for
the Slepian-Wolf (SW) networks is defined by a triple of mappings (f, g,¢) where
the encoder f maps A™ into a set of codewords M and the encoder g maps Y™ into
another set of codewords M, while the decoder ¢ maps M; X My into A™ x Y".

Further, let Ry 2 log |[M1|/n and Ry 2 log | M3|/n where |-| denotes the cardinality



of the set. Then (R1, Ry) is called the rate pair of the code.

Definition 2 (Probability of Error): The probability of error for a code (f, g, ¢)

of block length n for a SW network is defined as

Pe = pe(faga 90)

2 Q"({(z,y) € X" x V" : o(f(2),9(v)) # (2,9)}). (1)

Definition 3 (Achievable Rate Region): A rate pair (Ri, R») is said to be achiev-
able for a SW network, if there exists a sequence of codes (f("),g("),go(")) with

increasing block length n such that the rate pair of the code is (R1, Ry) and the

(n)

probability of error pe © — 0 as n — co. The achievable rate region is the closure of

the set of achievable rates.

Theorem 1 [2]: For a SW network with the jointly ergodic source (X,Y’), the

achievable rate region is given by
R, > H(XJ|Y),
Rl + R2 > H(Xa Y)a

where H(Y|X) and H(X|Y') denote the conditional entropy rates [2] and H(X,Y)

denotes the entropy rate [2] for the joint ergodic source (X,Y).



b. Typical sequences and typical set decoder

Let (X,Y) be a jointly ergodic source of discrete random variables with a fixed joint

distribution ). Then, we define typical sequences as follows:

Definition 4 (Typical Sequences): The set A? of e-typical n-sequences (¢,y) €

X™ x Y" is defined by

A? 2 {(w,y) EX" XY

1
- g @ ay) - HOLY)| <
n

- log@"(z) - H(X)|

1 1ogQ"(y) ~ H(Y)| < } @)

where H(-) denotes the entropy rate.
By the asymptotic equipartition property, we have the following Lemma (e.g.
see [2]).
Lemma 1: For any € > 0 and sufficiently large n, the set A satisfies
QMAr) £ QY{(z,y) e A} 21—« (3)
A7) < exp{n(H(X,Y) +¢)}. (4)
Further, for each y € Y™, let the set of # which is jointly typical with y be defined

by A?(y) = {® € X" : (x,y) € A?}. Then, we have

|4 (y)| < exp{n(H(X|Y) +¢)}. ()



By using the set A7 of typical sequences, we consider the following typical set

decoder [2].

Definition 5 (Typical Set Decoder): For a given pair of encoders (f, g) with block
length n, let (mq,m2) € M; X Ma be the outputs of two encoders. Then, for a
given € > 0, the typical set decoder outputs a pair (¢,y) € Al if there is one and
only one pair of (#,y) such that f(#) = m; and g(y) = ma. Otherwise, the decoder

declares an error.

c. Set of linear encoders

In what follows, |X| and |Y| are assumed to be powers of two. Unless both sizes of
the source alphabets X and Y are powers of two, we can add some dummy symbols
with probability zero in order to satisfy this condition. This allows us to endow X
and Y with the structure of Galois fields, and A™ and Y™ are considered as vector
spaces over these fields. Further, let us endow the vector spaces X* and Y* with the
structure of the extension fields of X and Y, respectively. The encoder f : X" — X%
is said to be linear if f is an X-linear mapping from X™ into X*. The linearity of
the encoder g : Y™ — V* can be defined similarly.

We first describe a set of linear encoders for X”. For any positive integer n and
k(< n), define the decomposition n = ku + m with u 2 [n/k] —1and 1 < m <k,
where [z] denotes the minimum integer greater than or equal to z. Then, # € A"
can be rewritten as @ = (®g,®1,--,®,), where &g € X™ and &; € X* (i =

1,2,---,u). To each element v € X'*, we associate the linear encoder f : X" — X%



given by

F(@) = pe0) + 3 7o (6)

=1

where 9(z) denotes the k-dimensional vector over X formed by adding k — m zeros
components after the components of m-dimensional vector z. This encoding oper-
ation (6) is interpreted as follows: Since v and @; (i = 1,2,---,u) are elements of
the Galois field X*, 3% ; y'@; can be computed over the Galois field X*. Then, by
interpreting "%, v'®; as a k-dimensional vector over the Galois field X, the last
addition can be computed.

We define C(n,k, X) to be a set of encoders given by (6) for all v € X*. Ob-
viously, we have |C(n,k, X)| = |X|*. In a similar manner, we also define the set

C(n,k,Y) of encoders g : Y* — Y* with cardinality |C(n, k, V)| = |V|*.

d. Generalized Hermitian codes

We introduce a class of error correcting codes (ECC) used in the following chapters.
As for the details of ECC, please refer to e.g. [10].

In 1981, Goppa [11] introduced some methods of algebraic geometry to the
construction of codes, and high-performance codes are constructed from various
algebraic curves. Among them, Shen [12] showed an explicit construction of high-
performance codes C'y from generalized Hermitian curves.

Definition 6 (Codes from Generalized Hermitian Curves): A code Cy(N, K, D)

constructed from a generalized Hermitian curve is a linear ECC over GF(22™) with



length N, dimension K and minimum distance D satisfying

0 < N < om(t+1)

K <N —g(¢,2m) ) (7)

D>N-K+1-g(,2m)

while £ is an integer greater than 1, and the genus g(¢,2™) is given by

-1
g(t,z) = %{Ew‘“‘i(ﬂe +1)7 = (e + 1) 1}- (8)

Since this code is constructed from a generalized Hermitian curve, we call Cgx (N, K, D)

as a generalized Hermitian code.

Since Reed-Solomon code has the parameters (N, K, D) satisfying (7) with £ =
1, the generalized Hermitian code may be regarded as a generalization of Reed-
Solomon code. As for details of the code construction of generalized Hermitian
codes, please refer to [12]. Generalized Hermitian codes can be efficiently decoded
up to the designed minimum distance Dy, 2 N - K +1-g4(£,2™) by employing
such algorithms as that of Shen and Tzeng [13], and its computational complexity

is O(N?).

ITI. Main Result

In this chapter, we propose explicit encoding and decoding procedures for SW net-
works, and show some properties of the procedures. First, we shall describe the

encoding procedure.

10



Encoding procedure: Denote all pairs of mappings in C(n, ki, X') x C(n, ks, Y)

as (fiy9:) (1 =1,2,-+-,N) where
N =|C(n, k1, X)| - |C(n, k2, V)| = |X|k1 . |y|k2_

Then, consider the following fixed length code with block length N, = n/N, where

n is an even integer.

1. Let agiven sequence € X™V° be represented in the form of N-dimensional vec-
tor over X", i.e. ® = (¢1,®2, -+, @) With @, € X" (1 =1,2,---, N). Then,
encode each subblock @; into f;(x;) € X* for i = 1,2,---, N. Similarly, for
a given sequence y = (Y1, Yy, -+, yy) € YVe with y, € Y* (i = 1,2,---, N),

encode each subblock y; into g;(y;) € Yk for i = 1,2,---, N.

2. Encode the N-dimensional vector & = (@1, @2, -+,2y) into ®H! ¢ XK1
(K1-dimensional vector over A™), and encode the vector y = (y;,¥ys, -, Yn)
into yH € Y"%2 where H; and H, denote the parity check matrices of the
code Cg(N,N — Ki, Dy) over X™ and the code Cg (N, N — Ko, D) over Y7,

respectively.

Therefore, the encoded sequences consist of N pairs of (f;(x),g;(y)) € X% x Yk
and a pair of (xHf, yHS) € XK1 x ynkz,
Obviously, the proposed code is linear, and the overall computational complexity

of the encoding procedure is at most O(N?). Further, let us define the rates of the

11



first and second steps of encodings by

A
ri = Blog|X|, 7= %log|y),

. A . A
rlz%log|é\,’|, r2:%log|y|,

then the rate pair (Rj, Ry) of the overall code are given by
(Rl, RQ) = (7‘1 + 71,79 + 52). (10)

Next, we shall describe the decoding procedure.
Decoding procedure: For obtained sequences (f;(®),¢9:(y)) ¢ = 1,2,---,N and

(xHt, yHE) € XK1 x ynK2 perform the following two-step decoding.

1. For ¢ = 1,2,---, N, decode (fi(#:),9:(y;)) by a typical set decoder ¢; corre-
sponding to (f;,¢:), and obtain the first estimate (&;,9;) € X™ x Y™. The
overall first estimate (&,9) € Ao x YNo of the encoded sequence can be

described as & = (@1, ®2,---,&n) and ¥ = (91, Y3, -, YUn)-

2. From two syndromes s; 2 zH! — & H! and s, 2 yH: — yH:, find vectors with
minimum Hamming weight e; € XNe and ey € YN such that e H: = s
and e; Hy = s5. These vectors can be obtained efficiently by using the error
correcting procedure of algebraic geometry code. Then, (2,9) = (& —e1,y —

e2) is the final estimate of the encoded pair.

In the first step of decoding, if the decoding of the i-th code (f;, ;) is successful,
both @; — @; and y, — 9§, become zero vectors. Hence, by using the linearity of the
syndrome, we can obtain the syndromes s; = (& — &) H? and s3 = (y — ) H% corre-

sponding to the errors produced by incorrect estimations of the first step decoding.

12



It is essential to use linear codes in the second step of encoding, since we cannot
know which code (f;, g;, ;) produces errors at the time of encoding.

Since the decoding of the generalized Hermitian code can be done in the com-
putational complexity of O(N3) (e.g. [13]), the overall computational complexity of
the decoding procedure is O(N2).

Remark 1: If we are allowed to search a code for the first step of encoding,
we can construct a code with much smaller block length. For an arbitrary € > 0
and sufficiently large block length n, assume that we can find the code (f,, g5, o)
satisfying pe(fs, gos o) < €. Then, we modify the proposed encoding procedure as
follows: In the first step of encoding, for a given N(< min(|X|*,|Y|*) — 1), only
one encoder pair (f,, g,) is used repeatedly for all (#;,y;) (: =1,2,---,N). In the
second step of encoding, Reed-Solomon codes over A™ and V" with length N are
used instead of generalized Hermitian codes. This construction is analogous to the

original concatenated code proposed by Forney for channel coding [8].

Remark 2: By using a random coding technique, Csiszar [9] showed that there
exists a linear code for SW networks, if the rate pair (R1, R2) is an inner point of the
achievable region. However, our result is different from his results in the following
points. (i) Our code construction is deterministic, and once we construct the Galois
fields X™, X%, Y™, and Y*2, the construction of codes C(n, k1, X), C(n, ka2, ), and
parity check matrices for Cg(N, N — K1, D1) and Cg (N, N — K3, Ds) can be done

within the computational complexity of O(N?2), i.e. the polynomial order of the

13



block length. On the contrary, in order to obtain a good linear code by Csiszar’s
approach, it requires the computational complexity of exponential order of the block
length. (ii) Csiszar proposed to employ minimum entropy decoding for the linear
codes, but its computational complexity is an exponential order of the block length.
On the contrary, the computational complexity of the decoding for our code is only
O(N2). Hence, our code is much more efficient than that proposed by Csiszar. (iii)
We consider the code construction for stationary ergodic sources, whereas Csiszar

restricted his attention to memoryless sources.

The next theorem shows that the probability of error can become arbitrary small

for sufficiently large block length.

Theorem 2: Suppose that the proposed code is applied to a jointly ergodic source
(X,Y). Then, for every § > 0, we have p. < § for sufficiently large N,, provided
that 1 > H(X|Y), ro > H(Y|X), 1 +ry > H(X,Y), #1 > 0 and # > 0 hold

simultaneously.

If the rate pair (Ri, R2) is an inner point of the achievable region of the SW
network, according to Theorem 1, we have R; > H(X|Y), Ry > H(Y|X) and
Ri+ Ry > H(X,Y). Since Ry = r; + 7 and Ry = ry + 7, we can choose a pair
(r1,72) such that ry > H(X|Y), ro > H(Y|X), 1 + 7o > H(X,Y), #1 > 0 and
7o > 0. Therefore, if the rate pair (Ri, R2) is an inner point of the achievable
region, we can construct the code achieving arbitrary small probability of error.

This discussion is summarized in the following corollary.

14



Corollary 1: Let (X,Y) be a jointly ergodic source. Assume that the rate
pair (Ri, R2) satisfies all the conditions Ry > H(X|Y), Ry > H(Y|X) and Ry +
Ry > H(X,Y). Then, for any ¢ > 0 we can choose rate pairs for the first and
second encoding (71, re) and (71, 72) such that the resulting code satisfies p. < ¢ for

sufficiently large N,.
Proof of Theorem 2: For ®, @' € X™ with ® # @', we define v (2, 2’) by
A
vi(z,2') = [{f € C(n, k1, X) : f(=) = f(=)}].

Similarly, for y,y’ € Y™ with y # v/, define

va(y, o) 2 [{g € Cn, ks, V) : 9(w) = g(¥')}.

Since f is linear, the condition f(®) = f(«') is equivalent to f(2") = 0 for a nonzero
vector @”(= @ — «'). Hence, according to (6) and (9), it is easy to see that

vi(&,2')
|C(n,k1,X)]

IN

u|X| 7% = ug exp{—nr1}

GHYD < usl YR = upexp{—nrs}

for every ® # &' and y # y’, where u; and uy are given by

(>

[n/k1] — 1= [log|X|/r] -1,

u

(1>

[n/kz2] — 1= [log|Y|/ra] — 1.

Uz

Since we employ typical set decoders, for any € > 0, the probability of error for

the i-th code (f;, gi, ¢;) can be bounded as

Pe(fisgivps) < QT((AT)°) + Q™ (EL(fi)) + Q" (E2(g:)) + Q™ (E3(fs, 9:)),

15



where A” is the set of typical sequence defined in (2), and

Ei(f) 2 {(e,y) € A7: f(2) = f(z) and (', y) € A7 for some @'(# @)}

By(g) = {(z,y) € AT: g(y') = g(y) and (e,y') € A" for some y'(+ y)}

Es(f,9) {(z,y) € A7 : f(2') = f(=),9(v') = g(y) and (2',y') € A?

for some «'(# ®) and y'(# y)}-

Then, by using (5) and (11), we have

LN
ﬁ;Q (Er(f:))
1
— _—_— n E
Cln )], 2, & )
1 n ;
[Clm bor, 2] (w,%:EA?Q (z,y) w%;c vi(z, ')
(@', Y)ea?
< Y QM= y)urexp{—nri}|AZ(y)|
(®Yy)exmxy»
< wujexp{—n(ri — H(X|Y) — ¢)}.

Since we can choose €(> 0) such that r; > H(X|Y) + ¢, we have
1 N
N Y QMEL(f)) <
=1
for sufficiently large n. Similarly, we have
1 N
¥ 2 Q" (Ba(gi) < e,
=1
for sufficiently large n. On the other hand, by using (4) and (11), we have
1 N
i > Q™M(Es(fir 9:))

=1
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1 n
= Gk A O I o, & El9)

gGC(n,k2,y)
1

< Q"(z,y) vi(e, 2 )ra(y, y')

|C(na klaX)| : |C(na k2ay)| (w,g%:eAg (wlyg):GA?:

22, Y'Y

< > Q™(=,y)urugexp{—n(r1 + ry)}|A7|

(®.y)exnxyn
< wjugexp{—n(ri +re — H(X,Y) — ¢)}.

Since we can choose €(> 0) such that r; +ry > H(X,Y) + ¢, we have
1 N
N Z Qn(E3(fia gz)) < ¢
=1
for sufficiently large n. Hence, the average probability of error for the code (f;, g;, ¥;)
i=1,2,---,N can be bounded by

N
Zpe(fiagiasoi) < Qn((A?)c) + 3e < 4,

=1

1
N
for sufficiently large n. This implies that for @ = (@1,---,2n) € XNe and y =

(yla"'ayN) EyNo

N
3 QMo (e, y) > Hpi(fi(®:), 9:(ys)) # (i, v:)}

(w’y)EXNo XyNo =1

N
= > Y Qehv)Ueilfi(zi)0i(w) £ (=i v)}

=1 (®,Y;)exnxyn
< 4Ne,

where 1{-} denotes the indicator function. Hence, among N decoders in the first step
of decoding, the average number of decoders which produce errors can be bounded

by 4Ne. Since both generalized Hermitian codes can correct at least | (min(Dy, Dy)—

17



1)/2] errors, the average probability of error p. after the second step of decoding

can be bounded by

pe < Pr{(w,y) € XNo x YNo .

N
S 1{pi(fil®:), 0i(w;)) # (i)} > [(min(Ds, Do) +1)/2 }

i=1
YLy e yyernxyn @ (@ y) Hei(fi(2), 9:(y)) # (2,9)}
[(min(Dy, Ds) + 1)/2]

IN

8Ne¢

min(D;, D;)’ (12)

where the first inequality comes from Markov’s inequality. For the code Cg (N, K1, Dy),

the parameter £ is an arbitrarily fixed integer satisfying ¢ > 2(r; 4+ r2)/log|X| — 1.

Then, according to (7) and (8), we have

. Dy _ f g lx?) -1 71
lim =% > lim - - 1
- - (log|X| N log | x|’ (13)

Noo N n—o0

Similarly we also have limy_,o D2/N = 72/log|Y|. Combining these results with

(12), we complete the proof. O

IV. Discrete Memoryless Sources

In this chapter, we restrict our attention to discrete memoryless sources (DMS’s).
First, we show that our proposed code can be modified such that both encoding and
decoding of the code do not depend on the generic distribution of DMS’s. Next,
we clarify that the probability of error can vanish exponentially as the block length

tends to infinity.
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First, we need some preliminaries about the type of sequence [4, 9], and the

minimum entropy decoder [9].

Definition 7 (Joint Type): Let the joint type Ppy of sequences @ € A", y € Y"
be the distribution on X X Y defined by the empirical distribution of the elements

of ¥ x Y in (x,y).

Definition 8 (Minimum Entropy Decoder): The minimum entropy decoder cor-
responding to a pair of encoders f : A" — My, g : Y* — M, maps each pair of
codewords (m1,ms) € My X My into a pair (2,y) € X X Y™ minimizing H(Pgy)
subject to f(x) = m; and g(y) = m2, where H(Pgy) denotes the entropy of the
joint type Pgy. Obviously this decoding rule does not depend on the generic dis-

tribution of DMS’s.

Since the proposed encoding procedure does not depend on the generic distribu-
tions of DMS’s, the encoding procedure remains unchanged. On the contrary, the
proposed decoding procedure is modified as follows: In the first step of decoding, for
i=1,2,---, N decode (fi(#;), 9:(y;)) by using minimum entropy decoder instead of
typical set decoder. Since minimum entropy decoder does not depend on the generic
distribution of DMS’s, this modified code is universal.

To describe our result, for R > 0 and distributions ¢ on X X Y define the

19



exponent functions as

el(R,Q) £ min[D(Pxy | Q) +|R - H(X|Y)|*]

€2(R,Q) = min[D(Pxy || Q)+ |R—H(Y|X)[] (- (14)

(R,Q) 2 min[D(Pxy || Q)+ |R - H(XY)*]

Here the minimizations are over all dummy random variables X, Y, and Pxy de-

notes their joint distribution; further [t|* 2 max(0,%), and D(P || Q) denotes
Kullback-Leibler informational divergence [4].

The next theorem shows that the probability of error for the proposed code

vanishes exponentially with block length N,.

Theorem 3: For any € > 0 and sufficiently large block length N,, the probability

of error for the proposed code can be bounded, universally for every @, as

1 . 71 79
e < 2ex —No{—mln<7,7> E,.(r,re, —6}], 15
Pe > P[ 2 log | X" log || (r1,72,Q) (15)

where

A . 3
Er(rlar2aQ) = 1121.12367'(7'1"@), (16)

with r3 = r1 + ra.

As shown in [9], F,(r1,72,Q) > 0 whenever (r;,72) is an inner point of the
achievable region of the SW network with generic distribution Q. Hence, if (R, R2)
is an inner point of the achievable rate region, that is, if all the conditions R; >
H(X|Y), R, > H(Y|X) and Ry + Ry > H(X,Y) are satisfied, we can choose r;

and 7y such that E,.(r1,r2,Q) > 0, #1 > 0 and 73 > 0. Therefore, we can achieve a

20



positive error exponent by the proposed code, whenever (R;, R») is an inner point
of the achievable rate region of the SW network.
The next corollary shows the error exponent obtainable by the proposed code

for the generic distribution Q.
Corollary 2: For the generic distribution @), the lower bound on the error expo-
nent obtainable by the proposed codes is given by

Rl — 71 R2 — T2
log |X] log |V

1 .
Ep(Ry, By, Q) =  max [5 mm(
0<r;<R;

> E’r(rla T2, Q):| ’ (17)
where E,.(r1,72,Q) is given by (16).

Before we prove Theorem 3, we shall explain some notations and the method of
type.

To simplify the notation, (joint) types of sequences will be considered as (joint)
distributions such as Px (Pxy) of dummy random variables X and Y. The set of
different types of sequences in A™ will be denoted by P,(X).

For a type Px € P,(X) and a joint type Pxy € P,(X X V), define Tx and

Ty|X(w) as

A
Ty = {wEXn:PwIPX},

Ty|x () {y e Y": Ppy = Pxy} forxcTx.
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The following upper bounds on P,, Tx and Ty|x(x) are well known (see e.g.[4]):

Pa(X)] < (n+ 1),

ITx| < exp{nH(X)}, (18)

Ty |x(z)] < exp{nH(Y|X)}, =cTx.
For each joint type Py 4y ¢ € Pn(X X & X Y x )) and a pair of encoders (f, g)

we first define the subset N;4(XXYY) of Txy as follows:

N;o(XXYY) 2 {(®,y) € Txy : there exist some (&,§) # (@, y) such that

Pypiyy = Pxxyy, f(®) = f(&) and g(y) = 9(9)} (19)

The next lemma is a strong version of Csiszar’s Lemma [9, p.587], and is essential

in this chapter.

Lemma 2: For any ¢ > 0, any positive integers ki, ko and sufficiently large

integer n, there exist at least N(1 — exp(—nec)) pairs of linear encoders (f,g) €

C(n, k1, X) x C(n, ka, V) satisfying

|Txy|exp{—n(ri + 75 — H(XY|XY) — 2¢)}
ifX£X,Y#Y

. |Txy|exp{—n(r; — H(X|XY) — 2¢)}

Ny o(XXYY) < ,  (20)

fy =Y

|Txy|exp{—n(ry — H(Y|XY) — 2¢)}

ifX=X

for every joint type Py gy ¢ € Pn(X X X X Y x ).
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Proof: This lemma can be proven in a similar manner as Csiszar’s Lemma in [9,

p.588]. According to (11), for every nonzero vectors @ € A" and y € Y™, we have
[{feC(nky,X):f(®)=03}
C(nk1,X)] —=

{g€C (n.k2,Y):9(y)=0}|
|C(n:k2!y)|

u; exp{—nri },

(21)

IN

ug exp{—nra}.

Consider any joint type Py gy ¢ € Pn(X X X X Y x V) with X # X and Y # Y.
Since both f and g are linear, the condition in (19) is equivalent to f(x — &) = 0,

g9(y — §) = 0. Hence, according to (18) and (21), we immediately have

1 S
¥ 2 Y. Np(XXYY)
feo(nykl yX) gEC(n,kz,y)
1
< =
< % >

fEC(n,k1,X) g€C(n,k2,Y)

X Z {f(x—2) =0 and g(= — &) = O}
(®.Y)eTxy (mvy)GTXmXY(wvy%
@ Y#@.Y)
< > {f € Cn, k1, X) : f= — @) = O}
P |C(n,k1,X)|
(w’y)ETXY (wvy)eTj'ffley(wvy):
(@& P#x.Y)
Mg €C(n k2, D) : g(y — §) = O}
|C(n, ks, V)
< wius|Txy|exp{—n(r1 + r. — H(XY|XY))}. (22)

For joint types Py gy with Y = Y, Nf,g(XXYf’) is equal to the number of pairs
(e,y) € Txy such that for some & € TX’|XY(‘B’y) the relation f(x) = f(2) holds.

Thus, by the same argument as above, we have

% Z Z Nf,g(XXY?)

FeC (n,k1,X) geC(n k2, Y)
< wy|Txy|exp{—n(r; — H(X|XY))}. (23)

23



Analogous bound holds also for joint types Py ¢y with X = X.

Using Markov’s inequality, the above bounds imply that

LH(F,9) € Cln, k1, &) X Cny b, ): (£, 9) fals to satisfy (20)

for some Py ¢y ¢ € Pr(X X X X Y x V)}

< wgua(n + 1)|X|2|y|2 exp(—2ne) < exp(—ne)

for sufficiently large n. Therefore, at most N exp{—ne¢} pairs of (f, g) in C(n, k1, X) x
C(n, k2,Y) fail to meet the requirement in the lemma for some Py 4.+ € P(X X
X X Y x Y). This completes the proof. O

The next lemma is a direct application of Lemma 2.

Lemma 3: For any ¢ > 0, any positive integers ki, ks and sufficiently large
integer n, there exist at least N(1 — exp(—nec)) pairs of linear encoders (f,g) €
C(n, ki, X)xC(n, ke, Y) such that for the pair (f, ¢) and the corresponding minimum
entropy decoder ¢, the probability of error p. is bounded, universally for every Q
as

Pe < exp{—n(E,(r1,72,Q) - )}, (24)

where E,(r1,72,Q) is defined by (16).

The proof of this lemma can be done essentially in the same manner as Theorem
1in [9, pp.589-590] by using Lemma 2 instead of Csiszar’s Lemma. So, we omit the

proof.

Proof of Theorem 3: The proof of Theorem 3 can be done by using a technique

developed by Delsarte and Piret for concatenated codes in [6, IV-c]. From Lemma
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3, at least N (1 — exp(—ne)) pairs of encoders have the probability of error bounded
by Pe 2 exp{—n(E.(r1,r2,Q)—¢€)}, and we call these encoders as good encoders and
other encoders as bad encoders. Suppose that after the second step of decoding, we
obtain the estimate (&,9) € XNe x Yo of an encoded sequence (,y). Since the
code Cg (N, K1, D;) can correct at least d = [(D; — 1)/2] errors, the probability of
erroneous estimation & # @ after the second step of decoding can be bounded by the
probability that errors occur at least d + 1 codes among (f;, gi, ;) 1 = 1,2,---, N

at the first step of decoding. Assuming that all bad encoders always give errors, we

have
N—Z N —z . .
Pr{zc xNo:2#2} < > ( . )(ﬁe)ﬂ(l — pe)N
j=d+1-2z J
S 2N(ﬁe)d_z

< V. exp{—n(d— 2)(En(ri,12,Q) — 9}, (25)

where z 2 N exp(—ne) denotes the maximum number of bad encoders. On the

other hand, in a similar manner as (13), we have

d—z L h gl XM +1
N 2 (log|X| B N ~ exp(—ne)

_ % <logfﬁ _ 0(1)> , (26)

where o(1) — 0 as n — oco. Substituting (26) into (25), we immediately obtain

Pr{e c XN°: & # &} < exp [—No{%ﬁi@ —6}] ,

for sufficiently large block length N,. In a similar manner, we also have

FaEp(r1, 0, Q) 6}] '

No."' —
Pr{y ey .y#y}SeXP[No{ 2log V)
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By combining the above two equations, we finally obtain

pe = Pr{(z,y) € XN x YN : (2,9) # (=,v)}

< Pr{eecxM:a2ta}+Pr{yc YV : 9 £y}

1 . 71 T
2 —No - T YT T~ Er ) ’ - ’
exp [ {2 min <10g 7] Tog |y|> (r1,72,Q) 6}]

IN

which completes the proof. O

V. Conclusion

We proposed an explicit construction of fixed length codes for Slepian-Wolf source
networks. The proposed code is linear and has two-step encoding and decoding
procedures similar to the concatenated code used for channel coding. Further, if
the sources are memoryless, the proposed code is universal and the probability of
error vanishes exponentially as the block length tends to infinity. Regarding future
research, we have the problem to obtain tight upper and lower bounds on the error

exponent obtainable by the proposed code for DMS’s.
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