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SUMMARY We generalize the construction of quantum
error-correcting codes from F4-linear codes by Calderbank et al.
to pm-state systems. Then we show how to determine the error
from a syndrome. Finally we discuss a systematic construction
of quantum codes with efficient decoding algorithms.
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1. Introduction

Quantum error-correcting codes have attracted much
attention. Among many research articles, the most gen-
eral and systematic construction is the so called stabi-
lizer code construction [6] or additive code construction
[2], which constructs a quantum error-correcting code
as an eigenspace of an Abelian subgroup S of the er-
ror group. Thereafter Calderbank et al. [3] proposed a
construction of S from an additive code over the finite
field F4 with 4 elements.

These constructions work for tensor products of
2-state quantum systems. However Knill [8], [9] and
Rains [13] observed that the construction [2], [6] can be
generalized to n-state systems by an appropriate choice
of the error basis. Rains [13] also generalized the con-
struction [3] using additive codes over F4 to p-state
quantum systems, but his generalization does not re-
late the problem of quantum code construction to clas-
sical error-correcting codes. We propose a construction
of quantum error-correcting codes for pm-state systems
from classical error-correcting codes which is a gener-
alization of [3].

Throughout this paper, p denotes a prime number
andm a positive integer. This paper is organized as fol-
lows. In Sect. 2, we review the construction of quantum
codes for nonbinary systems. In Sect. 3, we propose a
construction of quantum codes for p-state systems from
classical codes over Fp2 . In Sect. 4, we propose a con-
struction of quantum codes for pm-state systems from
classical linear codes over Fp2m . In Sect. 5, we discuss a
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systematic construction of quantum codes with efficient
decoding algorithms.

2. Stabilizer Coding for pm-State Systems

2.1 Code Construction

We review the generalization [8], [9], [13] of the con-
struction [2], [6]. First we consider p-state systems. We
shall construct a quantum code Q encoding quantum
information in pk-dimensional linear space into C pn

.
Q is said to have minimum distance d and said to
be an [[n, k, d]]p quantum code if it can detect up to
d − 1 quantum local errors. Let λ be a primitive p-th
root of unity, Cp, Dλ p× p unitary matrices defined by
(Cp)ij = δj−1,i mod p, (Dλ)ij = λi−1δi,j . Notice that C2

andD−1 are the Pauli spin matrices σx and σz. We con-
sider the error group E consisting of λjw1⊗ · · · ⊗wn,
where j is an integer, wi is Ca

pD
b
λ with some integers

a, b.
For row vectors a = (a1, . . . , an), b = (b1, . . . , bn),

(a|b) denotes the concatenated vector (a1, . . . , an, b1,
. . . , bn) as used in [3]. For vectors (a|b), (a′|b′) ∈ F2n

p ,
we define the alternating inner product

((a|b), (a′|b′)) = 〈a, b′〉 − 〈a′, b〉, (1)

where 〈, 〉 denotes the standard inner product in Fn
p .

For a = (a1,. . . , an) ∈ Fn
p , we define

X(a) = Ca1
p ⊗ · · · ⊗ Can

p ,

Z(a) = Da1
λ ⊗ · · · ⊗Dan

λ .

Then we have

X(a)Z(b)X(a′)Z(b′)

= λ〈a,b′〉−〈a′,b〉X(a′)Z(b′)X(a)Z(b). (2)

For (a|b) = (a1, . . . , an, b1, . . . , bn) ∈ F2n
p , we define

the weight of (a|b) to be

�{i | ai 
= 0 or bi 
= 0}. (3)

Theorem 1: Let C be an (n − k)-dimensional Fp-
linear subspace of F2n

p with the basis {(a1|b1), . . . ,
(an−k|bn−k)}, C⊥ the orthogonal space of C with re-
spect to the inner product (1). Suppose that C ⊆ C⊥

and the minimum weight (3) of C⊥ \ C is d. Then
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the subgroup S of E generated by {X(a1)Z(b1), . . . ,
X(an−k)Z(bn−k)} is Abelian, and an eigenspace of S
is an [[n, k, d]]p quantum code.

Next we consider quantum codes for pm-state sys-
tems, where m is a positive integer. But the code
construction for pm-state systems is almost the same
as that for p-state systems, because the state space
of a pm-state system can be regarded as the m-fold
tensor products of that of a p-state system. We shall
construct a quantum code encoding quantum informa-
tion in pmk-dimensional linear space into C pmn

. For
(a|b) = (a1,1, a1,2, . . . , a1,m, a2,1, . . . , an,m, b1,1, . . . ,
bn,m) ∈ F2mn

p , we define the weight of (a|b) to be

�{i | there exists nonzero element in
{ai,1, . . . , ai,m, bi,1, . . . , bi,m}}. (4)

Corollary 2: Let C be an (mn − mk)-dimensional
Fp-linear subspace of F2mn

p with the basis {(a1|b1),
. . . , (amn−mk|bmn−mk)}, C⊥ the orthogonal space
of C with respect to the inner product (1). Sup-
pose that C ⊆ C⊥ and the minimum weight (4) of
C⊥ \ C is d. Then the subgroup S of E generated by
{X(a1)Z(b1), . . . ,X(amn−mk)Z(bmn−mk)} is Abelian,
and an eigenspace of S is an [[n, k, d]]pm quantum code.

2.2 Error Correction Procedure

In this subsection we review the process of correcting
errors. Let H = C p , H⊗n ⊃ Q the quantum code
constructed by Theorem 1, and Henv the Hilbert space
representing the environment. Suppose that we send a
codeword |ψ〉 ∈ Q, that the state of the environment
is initially |ψenv〉 ∈ Henv, and that we receive |ψ′〉 ∈
H⊗n ⊗ Henv. Then there exists a unitary operator U
such that

|ψ′〉 = U(|ψ〉 ⊗ |ψenv〉).

If U acts nontrivially τ (0 ≤ τ ≤ n) subsystems among
n tensor product space H⊗n, then τ is said to be the
number of errors.

We assume that 2τ + 1 ≤ d, where d is as in The-
orem 1. If we measure each observable in H⊗n whose
eigenspaces are the same as those of X(ai)Z(bi) for
i = 1, . . . , n − k, where X(ai)Z(bi) is as defined in
Theorem 1, then the entangled state |ψ′〉 is projected to
A|ψ〉⊗|ψ′

env〉, for some A ∈ E and |ψ′
env〉 ∈ Henv, by the

measurements. By the measurement outcomes we can
find a unitary operator A′ ∈ E such that A′A|ψ〉 = |ψ〉.

The determination of A′ requires exhaustive search
in general. Thus the computational cost findingA′ from
the measurement outcomes is large when both n and
d are large. However, in certain special cases we can
efficiently determine A′. An efficient method finding
A′ is presented in Sect. 3.2.

Remark 3: The error correction method presented in
this subsection is not explicitly mentioned in the papers
[2], [3], [6]. Still, it can be derived from general facts on
quantum error correction presented in [1], [5], [10]. A
readable exposition on the error correction procedure
is provided by Preskill [16].

3. Construction of Quantum Codes for p-State
Systems from Classical Codes

3.1 Codes for p-State Systems

In this subsection we describe how to construct quan-
tum codes for p-state systems from additive codes over
Fp2 . Let ω be a primitive element in Fp2 .

Lemma 4: {ω, ωp} is a basis of Fp2 over Fp.

Proof: When p = 2 the assertion is obvious. We as-
sume that p ≥ 3. Suppose that ωp = aω for some
a ∈ Fp. Then ω = ωp2

= (aω)p = a2ω, and a is either
1 or −1. If a = 1, then ω ∈ Fp and ω is not a primitive
element. If a = −1, then ω2p = ω2. This is a contra-
diction, because ω is a primitive element and 2p 
≡ 2
(mod p2 − 1). ✷

For (a|b) ∈ F2n
p we define φ(a|b) = ωa + ωpb.

Then the weight (3) of (a|b) is equal to the Hamming
weight of φ(a|b). For c = (c1, . . . , cn),d ∈ Fn

p2 , we
define the inner product† of c and d by

〈c,dp〉 − 〈cp,d〉 = 〈c,dp〉 − 〈c,dp〉p (5)

where 〈, 〉 denotes the standard inner product in Fn
p2

and cp = (cp
1, . . . , c

p
n). For (a|b), (a′|b′) ∈ F2n

p the
inner product (5) of φ(a|b) and φ(a′|b′) is

〈φ(a|b), φ(a′|b′)p〉 − 〈φ(a|b)p, φ(a′|b′)〉
= 〈ωa+ ωpb, ωpa′p + ωb′

p〉
−〈ωpap + ωbp, ωa′ + ωpb′〉
= (ω2 − ω2p)(〈a, b′〉 − 〈a′, b〉).

Since ω is a primitive element, ω2 
= ω2p. Thus the
inner product (1) of (a|b) and (a′|b′) is zero iff the
inner product (5) of φ(a|b) and φ(a′|b′) is zero. Thus
we have

Theorem 5: Let C be an additive subgroup of Fn
p2

containing pn−k elements, C ′ its orthogonal space with
respect to the inner product (5). Suppose that C ′ ⊇
C and the minimum Hamming weight of C ′ \ C is d.
By identifying φ−1(C) with an Abelian subgroup of E
via X(·)Z(·), any eigenspace of φ−1(C) is an [[n, k, d]]p
quantum code.

†The map (5) is Fp-bilinear but does not take values in
Fp. It is neither Fp2 -bilinear nor Fp2 -sesquilinear. Thus
calling the map (5) “inner product” is a little abusive. But
the map (5) can be converted to an Fp-bilinear form by
dividing it by ω2 −ω2p. For this reason we call the map (5)
“inner product.”
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We next clarify the self-orthogonality of a linear
code over Fp2 with respect to (5).

Lemma 6: Let C be a linear code over Fp2 , and C ′

the orthogonal space of C with respect to (5). We define
Cp = {xp | x ∈ C} and (Cp)⊥ the orthogonal space of
Cp with respect to the standard inner product. Then
we have C ′ = (Cp)⊥.

Proof: It is clear that C ′ ⊇ (Cp)⊥. Suppose that
x ∈ C ′. Then for all y ∈ C, 〈x,yp〉 − 〈x,yp〉p = 0.
Thus 〈x,yp〉 ∈ Fp. Since 〈x, ωpyp〉 − 〈x, ωpyp〉p = 0,
ωp〈x,yp〉 ∈ Fp. Since ωp ∈ Fp2 \Fp, we conclude that
〈x,yp〉 = 0. ✷

Theorem 7: Let C be an [n, (n − k)/2] linear code
over Fp2 such that C ⊆ (Cp)⊥. Suppose that the min-
imum Hamming weight of (Cp)⊥ \ C is d. Then any
eigenspace of φ−1(C) is an [[n, k, d]]p quantum code.

3.2 Error Correction for p-State Systems

In this subsection we consider how to determine the er-
ror from measurements with quantum codes obtained
via Theorem 7. We retain notations from Theorem 7.
Suppose that g1, . . . , gr is an Fp2-basis of C. Then
Fp-basis of φ−1(C) is (a1|b1) = φ−1(g1), (a2|b2) =
φ−1(ωg1), . . . , (a2r|b2r) = φ−1(ωgr). Suppose that
by the procedure in Sect. 2.2, the error is converted to
A ∈ E that corresponds to φ−1(e) for some e ∈ Fn

p2

via X(·)Z(·), and the original quantum state is |ψ〉.
We know which eigenspace of X(ai)Z(bi) the vector
A|ψ〉 belongs to. By Eq. (2)

X(ai)Z(bi)A|ψ〉 = λ�A|ψ〉,

where ! is the alternating inner product (1) of (ai|bi)
and φ−1(e), which is denoted by si ∈ Fp. Then we
have

〈gi, e
p〉 − 〈gp

i , e〉 = (ω2 − ω2p)s2i−1,

〈ωgi, e
p〉 − 〈ωpgp

i , e〉 = (ω2 − ω2p)s2i.

It follows that 〈gp
i , e〉 = (ω2 −ω2p)(ωs2i−1−s2i)/(ωp −

ω). {gp
1 , . . . , gp

r} can be used as rows of the check ma-
trix of (Cp)⊥. If we have a classical decoding algorithm
for (Cp)⊥ finding the error e from a classical syndrome
〈gp

1 , e〉, . . . , 〈gp
r , e〉, then we can find the quantum error

A ∈ E.

Remark 8: In this section we assumed that ω is a
primitive element in Fp2 . It is enough to assume that
ω belongs to Fp2 and ωp, ω are linearly independent
over Fp.

4. Construction of Quantum Codes for pm-
State Systems from Classical Codes

4.1 Codes for pm-State Systems

In this subsection we show a construction of quantum
codes for pm-state systems from classical linear codes
over Fp2m . Our construction is based on the construc-
tion [4] by Chen which constructs quantum codes for
2-state systems from linear codes over F22m . We modify
his construction so that we can estimate the minimum
weight (4) from the original code over Fp2m .

We fix a normal basis {θ, θp, . . . , θp2m−1} of Fp2m

over Fp. There always exists a normal basis of Fp2m

over Fp [11, Sect. VI,§13]. For a = (a1, . . . , am, b1,
. . . , bm),a′ = (a′1, . . . , a′m, b′1, . . . , b′m) ∈ F2m

p , we de-
fine φ(a) = a1θ + a2θ

p+ · · · +amθpm−1
+ b1θ

pm

+ · · ·
+bmθp2m−1

, and T (a,a′) = cm+1 − c1 ∈ Fp, where
φ(a)φ(a′)p

m

= c1θ+ · · · +c2mθp2m−1
and ci ∈ Fp.

Then T is a bilinear form.

Lemma 9: T is alternating and nondegenerate.

Proof: First we show that T is alternating, that is,
T (a,a) = 0 for all a ∈ F2m

p . Let x = φ(a) ∈ Fp2m ,
and xxpm

= c1θ+ · · · +c2mθp2m−1
for ci ∈ Fp. Then

(xxpm

)p
m

= cm+1θ+cm+2θ
p+ · · · +c2mθpm−1

+c1θ
pm

+
· · · +cmθp2m−1

. Since (xxpm

)p
m

= xpm

x, ci = ci+m for
i = 1, . . . , m. Hence T (a,a) = 0.

We assume that x 
= 0, which implies that a 
= 0.
Since x(θ/xpm

)p
m

= θpm

, T (a, φ−1(θ/xpm

)) = 1, which
shows the nondegeneracy. ✷

Lemma 10: By abuse of notation, we denote by T
the representation matrix of the bilinear form T with
respect to the standard basis of F2m

p , that is, for a, b ∈
F2m

p , we have T (a, b) = aTbt. Let Im be the m × m

unit matrix and S =
(

0 Im

−Im 0

)
. There exists a

nonsingular 2m× 2m matrix D such that DTDt = S.

Proof: See [11, Chapter XV] and use the previous
lemma. ✷

For c = (c1, . . . , cn) ∈ Fn
p2m , let (ai,1, . . . ,

ai,m, bi,1, . . . , bi,m) = φ−1(ci)D−1 ∈ F2m
p . We define

Φ(c) = (a1,1, a1,2, . . . , a1,n, a2,1, . . . , an,m, b1,1, . . . ,
bn,m). Then it is clear that the Hamming weight of c is
equal to the weight (4) of Φ(c), since D is a nonsingular
matrix. For a, b ∈ Fn

p2m we consider the inner product

〈a, bpm〉, (6)

where 〈, 〉 denotes the standard inner product in Fn
p2m .

Proposition 11: Let C ⊂ Fn
p2m be a linear code over

Fp2m , and C ′ the orthogonal space of C with respect to
(6). Then the orthogonal space of Φ(C) with respect
to (1) is Φ(C ′).
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Proof: For e = (e1, . . . , en), e′ = (e′1, . . . , e′n) ∈ Fn
p2m ,

the inner product (1) of Φ(e) = (a1,1, . . . , an,m, b1,1,
. . . , bn,m) and Φ(e′) = (a′1,1, . . . , a

′
n,m, b′1,1, . . . , b

′
n,m)

is equal to
n∑

i=1

m∑
j=1

(ai,jb
′
i,j − a′i,jbi,j)

=
n∑

i=1

φ−1(ei)D−1S(D−1)tφ−1(e′i)
t

=
n∑

i=1

T (φ−1(ei), φ−1(e′i)).

If eie
′pm

i = c1θ + · · ·+ c2mθp2m−1
, then T (φ−1(ei), φ−1

(e′i)) = cm+1 − c1. Thus if 〈e, e′pm〉 = 0 then the inner
product (1) of Φ(e) and Φ(e′) is zero, which implies
Φ(C ′) is contained in the orthogonal space of Φ(C)
with respect to (1). Comparing their dimensions as
Fp-spaces we see that they are equal. ✷

Theorem 12: Let C ⊂ Fn
p2m be an [n, (n− k)/2] lin-

ear code over Fp2m , Cpm

= {xpm | x ∈ C}, and (Cpm

)⊥

the orthogonal space of Cpm

with respect to the stan-
dard inner product. Suppose that C ⊆ (Cpm

)⊥, and
the minimum Hamming weight of (Cpm

)⊥\C is d. Then
the minimum weight (4) of Φ(C) is d, and Φ(C) is self-
orthogonal with respect to the inner product (1). Any
eigenspace of Φ(C) is an [[n, k, d]]pm quantum code.

4.2 Error Correction for pm-State Systems

In this subsection we consider how to determine the
error from measurements with quantum codes obtained
via Theorem 12. We retain notations from Theorem 12.
Suppose that g1, . . . , gr is an Fp2m -basis of C.

Suppose that by a similar procedure to Sect. 2.2,
the error is converted to a unitary matrix corresponding
to Φ(e) for e ∈ Fn

p2m . We fix a basis {α1, . . . , α2m}
of Fp2m over Fp. Then Fp-basis of Φ(C) is {Φ(αjgi) |
i = 1, . . . , r, j = 1, . . . , 2m}. First we shall show how
to calculate 〈e, gpm

i 〉 for each i. For j = 1, . . . , 2m, let
(aj |bj) = Φ(αjgi). As in Sect. 3.2, by the measurement
outcomes we can know the inner product (1) of Φ(e)
and Φ(αjgi), denoted by sj , for j = 1, . . . , 2m.

For x = c1θ+ · · · +c2mθp2m−1 ∈ Fp2m , c1, . . . ,
c2m ∈ Fp, we define P (x) = cm+1 − c1. Then
P is a nonzero Fp-linear map. As discussed in the
proof of Proposition 11, sj = P (〈e, αpm

j gpm

i 〉) =
P (αpm

j 〈e, gpm

i 〉). We define the map P2m : Fp2m →
F2m

p , x �→ (P (αpm

1 x), . . . , P (αpm

2mx)). Then P2m is an
Fp-linear map, and P2m(〈e, gpm

i 〉) = (s1, . . . , s2m). If
P2m is an isomorphism, then finding 〈e, gpm

i 〉 from (s1,
. . . , s2m) is a trivial task, merely a matrix multiplica-
tion. We shall show that P2m is an isomorphism.

Lemma 13: [11, Theorem 6.1, Chapter III] Let W
be a 2m-dimensional vector space over a field K with a
basis {x1, . . . , x2m}, and Ŵ the dual of W , that is, the
K-linear space consisting of linear maps from W to K.
Then there exists a basis {f1, . . . , f2m} of Ŵ such that
fk(xj) = δjk. {f1, . . . , f2m} is called the dual basis.

Lemma 14: There exist β1, . . . , β2m ∈ Fp2m such
that P (αpm

j βk) = δjk.

Proof: Notice that {αpm

1 , . . . , αpm

2m} is an Fp-basis of
Fp2m . The dual space F̂p2m can be regarded as Fp2m -
linear space by defining xf : u �→ f(xu) for x ∈ Fp2m

and f ∈ F̂p2m . Let f1, . . . , f2m be the dual basis of
{αpm

1 , . . . , αpm

2m}. Since F̂p2m is one-dimensional Fp2m -
linear space and 0 
= P ∈ F̂p2m , fk can be written as
βkP for some βk ∈ Fp2m . It is clear that P (αpm

j βk) =
δjk. ✷

Proposition 15: P2m is an isomorphism.

Proof: It suffices to show that P2m is surjective. For
(a1, . . . , a2m) ∈ F2m

p , P2m(a1β1+ · · · +a2mβ2m) = (a1,
. . . , a2m), where βk is as in the previous lemma. ✷

As in Sect. 3.2, the error e can be determined by
a classical error-correcting algorithm for (Cpm

)⊥ from
〈gpm

1 , e〉, . . . , 〈gpm

r , e〉.

5. Notes on the Construction of Codes with
Efficient Decoding Algorithms

It is desirable to have a systematic construction of
quantum codes with efficient decoding algorithms.
Calderbank et al. [3, Sect. V] showed a construction of
cyclic linear quantum codes using the BCH bound for
the minimum distance. With their construction we
can correct errors up to the BCH bound using the
Berlekamp-Massey algorithm.

If we use the Hartmann-Tzeng bound [7] or the
restricted shift bound [14] then we get a better esti-
mation of the minimum distance, and we can correct
more errors using modified versions of the Feng-Rao
decoding algorithm in [14, Theorem 6.8 and Remark
6.12]. The algorithms [14, Theorem 6.8 and Remark
6.12] correct errors up to the Hartmann-Tzeng bound
or the restricted shift bound.

We cannot construct good cyclic codes of arbitrary
code length. So we have to often puncture a cyclic
code as in [3, Theorem 6 b)] to get a quantum code
with efficient decoding algorithms. In classical error
correction, we correct errors of a punctured code by
applying an error-and-erasure decoding algorithm for
the original code to the received word. But there is no
(classical) received word in quantum error correction.
So we decode a quantum punctured code as follows:
Let C ′ ⊂ Fn

q be a (classical) linear code, h′
1, . . . , h′

r

the rows of a check matrix for C ′, C the punctured
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code of C ′ obtained by discarding the first coordinate,
h1, . . . , hr−1 the rows of a check matrix for C, and 0hi

the concatenation of 0 and hi for i = 1, . . . , r − 1. We
can express 0hi as

0hi =
r∑

j=1

aijh
′
j ,

where aij ∈ Fq [15, Lemma 10.1]. Suppose that an
error e = (e2, . . . , en) ∈ Fn−1

q occurs and that we have
the syndrome s1 = 〈h1, e〉, . . . , sr−1 = 〈hr−1, e〉. We
want to find e from s1, . . . , sr−1 using an error-and-
erasure decoding algorithm for C ′. We can find s′1, . . . ,
s′r ∈ Fq such that

si =
r∑

j=1

aijs
′
j

for i = 1, . . . , r − 1. Then there exists e′ =
(e1, . . . , en) ∈ Fn

q such that

〈h′
j , e

′〉 = s′j for j = 1, . . . , r, (7)

because the condition (7) implies that 〈0hi, e
′〉 = si

for i = 1, . . . , r − 1. If we apply an error-and-erasure
decoding algorithm to the syndrome s′1, . . . , s′r with
the erasure in the first coordinate, then we find e′.

Note that the algorithms [14, Theorem 6.8 and Re-
mark 6.12] are error-only decoding algorithms but we
can modify them to error-and-erasure algorithms along
the same line as [17, Sect. VI].
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