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Abstract

This paper deals with the problem of simulating a discrete memoryless channel
and proposes two algorithms for channel simulation by using the interval algorithm.
The first algorithm provides exact channel simulation and the number of fair random
bits per input sample approaches the conditional resolvability of the channel with
probability one. The second algorithm provides approximate channel simulation and
the approximation error measured by the variational distance vanishes exponentially
as the block length tends to infinity, when the number of fair random bits per input
sample is above the conditional resolvability. Further, some asymptotic properties
of these algorithms as well as the original interval algorithm for random number

generation are clarified.

Keywords:  channel simulation, interval algorithm, conditional resolvability, con-

ditional entropy, random number generation



I. Introduction

The minimum randomness necessary to simulate an arbitrary given channel was
first investigated by Steinberg and Verdi [1], as a complementary problem to that
of approximating output statistics introduced by Han and Verdd [2]. In that prob-
lem, they measured the complexity of the simulator by the number of fair bits per
input sample required to generate every realization of the simulated process and
they adopted the variational distance as a measure of similarity between probabili-
ty distributions. They considered the channel simulation such that the variational
distance goes to zero as the block length tends to infinity and showed that the con-
ditional resolvability defined by the minimum number of fair bits per input sample is
equal to both the conditional sup-entropy and the minimum achievable fixed-length
source coding rate with side information. However, they did not consider practical
methods to simulate the channel nor the problem of simulating the channel without
any approximation.

This paper deals with the problem of simulating a discrete memoryless channel
(DMC) and proposes two algorithms for channel simulation that achieve the condi-
tional resolvability. Both algorithms can be regarded as special cases of the interval
algorithm proposed by Han and Hoshi for random number generation [3]. The
first algorithm provides exact channel simulation. By investigating large deviations
performance of the empirical number of fair bits, we show that the number of fair

random bits per input sample approaches the conditional resolvability of the channel



with probability one. The second algorithm provides approximate channel simula-
tion. We demonstrate that the approximation error measured by the variational
distance between the desired and approximate distributions, vanishes exponentially
as the block length tends to infinity, when the number of fair random bits per input
sample is above the conditional resolvability. On the contrary, the approximation
error approaches the value of two exponentially, when the number of fair random
bits per input sample is below the conditional resolvability. Further, we show that
the second algorithm can achieve the optimum error exponent, when the number
of fair random bits per input sample is within some range above the conditional
resolvability.

Finally, since random number generation is a special case of channel simulation,
all asymptotic properties obtained for channel simulation are directly applied to
the interval algorithm for random number generation. In section V, we briefly
describe some asymptotic properties of the interval algorithm, when it is specialized

in random number generation.

I1. Basic Definitions

(a) Discrete memoryless sources and channels

Let X, Y be finite sets. We denote by M(X') [resp. M(D)] the set of all probability
distributions on X’ (resp. V). Similarly, we denote by M(Y|X) the set of all condi-
tional distributions W (:|-) such that W(:|a) € M(Y) for every a € X. Throughout

this paper, by a source X with alphabet X', we mean a discrete memoryless source



(DMS) of distribution Px € M(X). To denote a source we will use both nota-
tions X and Py interchangeably. Similarly, a discrete memoryless channel (DMC)
W : X — Y is given by a conditional distribution W € M(Y|X). A joint input-
output process with a distribution Pxy € M(X x Y) will be denoted by XY and
Pxy.

For random variables (RV’s) X and Y such that X has a distribution Py and Y is
connected with X by a DMC W : X — Y, we shall denote their conditional entropy

H(W|Px) and H(Y|X) interchangeably. Further, for arbitrary distributions
P,Q € M(X) and conditional distributions V, W € M(Y|X), we denote by D(P ||

Q) and D(V || W|P), the information divergence

P(z)
D(P Q) = IEZ;(P 0@’

and the conditional information divergence

D(V || WIP) 2 3 P(2)D(V(-|z) || W(lz)),
z€X

respectively. From now on, all logarithms and exponentials are considered to the
base of two.

(b) Conditional resolvability

Here, we shall give some necessary definitions for conditional resolvability introduced

by Steinberg and Verdi [1].

Definition 1: The variational distance or £; distance between two distributions



P and Q on A is

d(P,Q) =Y |P(a) - Q(a)|-

acA
Definition 2 [2]: The resolution R(P) of a distribution P € M(X’) is the mini-
mum log m such that P is an m-type (i.e., its masses are integer multiples of 1/m).

If such an m does not exist, R(P) = oo.

Definition 3: The resolution R.(W) of a DMC W : X — Y is defined as

Ec(W) = max R(W(|a)).

Definition 4: For a source Py and a DMC W : & — Y, let Px - W be the
joint distribution of input-output process of the DMC W. Then, R is e-achievable
resolution rate of XY for given X, if for every v > 0 there exists a channel W" :
X" — Y™ satisfying

1 -
“R(W™) < R+~

n

and

d(Py - W™, P} -W") < e

for all sufficiently large n, where P¥ (resp. W™) denotes the n-th memoryless

extension of Px (resp. W).

Definition 5: 0.(XY|X) is the minimum e-achievable resolution rate of XY

given X. Especially, (XY |X) given by

o(XY|X)=1limo (XY|X) =supo.(XY|X)
e—0 >0



is the conditional resolvability of XY given X.
The next theorem indicates the relation between the conditional resolvability

and the conditional entropy.

Theorem 1 [1]: For random variables X and Y such that X has a distribution

Px and Y is connected with X by a DMC W : & — ),

o(XY|X) = H(Y|X).

ITI. Channel simulation by interval algorithm

In this section, we propose two algorithms for channel simulation by the interval
algorithm [3]. Especially, we consider the simulation of DMC by using an unbiased

coin and we investigate the required number of coin tosses.

(a) Required number of coin tosses for exact channel simulation

First, we propose an algorithm for channel simulation by using a version of the
interval algorithm such that the partition of the unit interval depends on the input
sequence. For the sake of simplicity and without any loss of generality, we assume

that Y = {1,2,---, M}.

Interval algorithm for channel simulation:

1) Let zjz2---2, € X™ be a given input sequence. Set m = 1,s =t = A (null

string), a; = 7: = 0,8 = 6;: = 1, I(s) = [es, Bs).



2) Partition the interval J(¢) 2 [Y¢, 6¢) into M disjoint subintervals J (1), J (¢2),---,J (tM)
such that
J(t]) = [7tja5tj) (j:]-a2a"'aM)

where

Yei = Yo+ (6 — 7)Qj-1(21)
8; = v+ (0 —7)Qj(z1)
J
Qj(wl) = ZW(k|$1) (] :]—a2a"'aM; QO(ml) :0)
k=1

3) Toss the unbiased coin Z such that it obtains a value a € {0,1}, and generate

the subinterval of I(s)

I(Sa) = [asaa ﬁsa)

where

Qgq = Qs+ (ﬁs - as)a/2

Bsa = ag+ (ﬁs - as)(a+ 1)/2

4a) If I(sa) is entirely contained in some J(ti) (¢ = 1,2,---, M), generate the
output ¢ as the value of the mth output symbol Y,,, and set ¢t = ¢i. Otherwise
go to 5).

=

4b) If m = n, stop the algorithm. Otherwise, partition the interval J(t) = [, )

into M disjoint subintervals J(t1),J(¢2),---,J(tM) such that

J(t]) = [7tja5tj) (j:1a2a"'aM)



where

Yi; = e+ (0 — 1) Qj—1(Tmy1)

8; = e+ (0 — 7)) Qj(Tme1)

J
Qi(emin) = Y W(kams1) (=12 M; Qolens1) = 0),
k=1

set m =m + 1 and go to 4a).

5) Set s = sa and go to 3).

Though we can exactly simulate a DMC by the interval algorithm for channel

simulation, the number of coin tosses to generate an output sequence cannot be

specified in advance. Hence, for a given sequence @ € X", let T,,(«) be the random

variable indicating the number of coin tosses to generate a sequence in Y”. The

next theorem gives a large deviations performance of T,,(x).

Theorem 2: If the input process X™ = X;X5---X,, is an i.i.d. with a generic

distribution Px and the output process Y™ is connected to X™ by a DMC W, then

the number of coin tosses T,,(X™) necessary to generate a sequence in V" satisfies

where

1
hnnnf[——dogprpf41;gxn)Z_Rﬂ
n

n—oo

= liminf [—llog ( Z Py (2)Pr{n"'T,(z) > R})]

n—oo n
rTexr

> Er(Ra PXaW)a (]—)

E.(R,Px,W) 2 [D@Q-V | Px-W)

min
QEM(X),VeM(Y|X)

+|R-H(V|Q) - D(V | W|Q)[T], (2)



and |¢|T = max{0,z}. Further, E,(R, Px, W) > 0 if and only if R > H(Y|X). On

the other hand,

n—oo

1
hnl[——wogprpf41;gxn)g_3{
n

= lim [—llog( Z Py (2)Pr{n"'T,(z) < R})]

n—oo n weXn

= F(R,Px,W), (3)

where

A .
F(R, Px, W) = QeM(xwgmmx); D@Q-V | Px-W). (4)
D(V|WI|Q)+H(V|Q)<R

It should be noted that F(R, Px, W) may be +oco. Further, F(R, Px,W) > 0 if

and only if R < H(Y|X).

Combining Theorem 2 and Borel-Cantelli’s lemma (see e.g. [4]), we immediately

obtain the following corollary.

Corollary 1: If the input process X™ = X1 X5--- X, is an i.i.d. with a generic
distribution Px, and the output process Y is connected to X™ by a DMC W, then

the number of coin tosses T,,(X™) necessary to generate Y™ satisfies

lim ~T,(X") = H(Y|X) a.s. (5)

n—oo n,

We conclude that the interval algorithm for channel simulation is asymptotically

optimum from the viewpoint of the necessary random bits per input sample.

(b) Channel simulation with fixed number of coin tosses

Next, we consider another problem of channel simulation where the number of coin

10



tosses is specified. In this case, we cannot simulate the channel exactly but approx-
imately. First, we modify the interval algorithm for channel simulation such that
the algorithm outputs a dummy sequence 11---1, whenever the algorithm does not

stop within IV coin tosses.

Interval algorithm for channel simulation with n coin tosses:

1) Let zj22---2, € A™ be a given input sequence. Set m = 1,l =0,s =t = A

(null string), as; =y =0,8s = 6: = 1,I(s) = [, Bs).

2) Partition the interval J(t) 2 [Y¢, 0¢) into M disjoint subintervals J (1), J(t2),---,J (tM)

such that

J(t]) = [7tja5tj) (j:1a2a"'aM)

where

Yei = e+ (8 —7)Qj-1(21)
8; = v+ (0 —7)Qj(z1)

Qj(wl) = Zj:W(kh}l) (.7 = 1a2a"'aM; QO(iBl) = 0)
k=1

3) If I = n, generate the output 11---1 as the output sequence Y™ and stop the
algorithm. Otherwise, toss the unbiased coin Z such that it obtains a value

a € {0,1} and generate the subinterval of I(s)

I(Sa) = [asaa ﬁsa)

11



4a)

4b)

5)

where

Qgq = Qs+ (ﬁs - as)a/2

ﬁsa = a;+ (ﬁs - as)(a‘|’ 1)/2
Set I =1+1.

If I(sa) is entirely contained in some J(ti) (i = 1,2,---, M), set t = ti.

Otherwise go to 5).

If m = N, generate the output ¢ as the output sequence Y™ and stop the
algorithm. Otherwise, partition the interval J(t) = [y, 6:) into M disjoint

subintervals J(t1), J(¢2),---,J (¢t M) such that

J(t]) = [7tja5tj) (j:1727"'aM)

where

Yei; = Ye+ (6t — v)Qj—1(@m+1)
8 = e+ (0 —7)Qj(2my1)

J
Qi(@mt1) = Y W(klems) (=12, M; Qo(2ms1) = 0),
k=1
set m =m + 1 and go to 4a).

Set s = sa and go to 3).

The next theorem shows that the approximation error measured by the varia-

tional distance between the desired and approximate output distributions vanishes

12



exponentially, when the number of fair random bits per input sample is above the

conditional resolvability H(Y|X).

Theorem 8: For an input sequence @ € X", let W™ (y|#) denote the conditional
probability of an output sequence y € Y™ generated by the interval algorithm with

nR coin tosses. Then, we have

1 -
liminf |~ logd(P§ - W™, P} - W")| > B,(R, Px, W), (6)
where E,.(R, Px,W) is given by (2).

The following theorem is the converse of Theorem 3.

Theorem 4: For any W™ € M(Y"|X") with its resolution R.(W™) = nR, we

have
lim sup —%logd(P}}-W",P}}-W") < Eu(R, Px, W), (7)

where
E,(R, Px,W)2 min DQ -V | Px -W). (8)

QEM(X),V:EM(V|X):
D(V|WIQ)+H(V|Q)>R

It should be noted that E,,(R, Px,W) may be 4+oco. Further, E,,(R,Px,W) >
E.(R, Px,W) and equality holds for R < R,, where
A
R,=D(V, || W|Px) + log M, (9)
and V,(b|a) 2 1/M for every a € X and b € ).

According to Theorem 4, we can conclude that the bound obtained in Theorem
3 is tight whenever R < R,, because W™ in (6) obviously satisfies RC(VV") = nR.

However, it is still an open problem to determine the error exponent for R > R,.

13



The following theorems show that the approximation error approaches the value
of two exponentially, when the number of fair random bits per input sample is below

the conditional resolvability.

Theorem 5: For an input sequence € X, let W(y|w) denote the conditional
probability of an output sequence y € Y™ generated by the interval algorithm with

nR coin tosses. Then,

1 -
Jim [~ 1og(2 - a(Pg - W, PE WY = FA P W), ()
where F (R, Px, W) is given by (4).

Theorem 6: Let W € M(Y"|X™) denote the conditional probability which min-

imizes the variational distance d(P% - W™, P§ -W") under the condition R.(W") =

nR. Then,
Jim —%10g{2 —d(Pg -W", P} -W")}| =G(R, Px,W), (11)
where
G(R, Px, W) = QeM(x)I}‘lfi:IelM(wx): D@V Fx - W). (12)

H(V|Q)<R
Obviously G(R, Px,W) < F(R, Px,W) for R < H(Y|X). Therefore, the inter-
val algorithm with nR coin tosses cannot achieve the optimum exponent, whenever

R < HY|X).

IV. Proofs of Theorems

14



The type of a sequence # € X™ is a distribution Pz on X, where Pg(a) is given by

1
Pg(a) = o (number of occurrences of a € X in ).

We shall write P, for the set of types of sequences in A™. The joint type Pg y of
two sequences @ € X" and y € Y is the distribution on X X Y, defined similarly.
The set of sequences of type P in A" is denoted by Tp or Tp. Further, for every
® € X" and y € V", if ® and y have the joint type Pg y(a,b) = Pg(a)V (b|a), then
we shall say that y has the conditional type V given ®. The set of such y will be
denoted by Ty (). We shall denote by V(P) or V,(P) the set of stochastic matrices
V : X — Y such that Ty (&) # 0 for a sequence  of type P.

We introduce some well-known facts, cf. Csiszar-Korner [5]: For the set of types

and the set of stochastic matrices, we have

[Pnl < (n—|—1)|X|, (13)

Va(P)| < (n+ )P (14)
where | - | denotes the cardinality of the set. If P € P,, then
(n+1)"*lexp{—nD(P || Q)} < Q"(Tp) < exp{—nD(P || Q)}. (15)
If V is any conditional type of sequences in Y™ given & € Tp then
(n+ 1)~V exp{n B (V|P)} < [Ty (x)| < exp{nH(VIP)}.  (16)
Further, if ® € Tp and y € Ty (x), we then have

W"(yle) = exp{—n[D(V || W|P) + H(V|P)]}. (17)

15



Proof of Theorem 2:  Due to the nature of the interval algorithm, we can
correspond each y € Y™ to several distinct subintervals J(y) of [0,1) with width
W™ (y|®). On the other hand, partition a unit interval [0, 1) into exp(nR) subinter-
vals

A

I, =[(i— 1)exp(—nR),iexp(—nR)) i=1,2,---,exp(nR).

Then, the interval I; corresponds to each outcome of nR coin tosses. If the subin-
terval I; is completely included in some J(y), then the sequence of coin tosses cor-
responding to I; can terminate the algorithm. By using this observation, (13)-(17)

and the relation
D@Q-V || Px-W)=D(Q| Px)+ DV || W|Q), (18)
we have

Pr{T.(X") > nR} = > P%(=)Pr{Ta(z) > nR}

Tecaxn
< > P}}(w)( > 2exp(—nR) + > W"(ylw))
rean Yeym: Yeym:
W (Y|L) >exp(—nR) W (Y| L) <exp(—nR)
< Y, exp{-nD(Q || Px)}
QePrn
X ( > 2exp{-n(R - H(V|Q))}
VeEYR(Q):
D(VIWIQ)+H(VIQ)<R
+ > exp{-nD(V || W|Q)})
VEVR(Q):
D(VIWIQ)+H(VIQ)>R
<2 Y exp{-n(D@-V Px-W)
QEPR,VEVR(Q)
+HR-H(V|Q) - D(V | WIQ)|")}
< 2(n4 )XV expl _nE, (R, Px, W)}

16



which implies (1).
On the other hand, E,(R,Px,W) = 0 if and only if @ € M(X) and V €
M(Y|X) satisfy both Q -V = Px - W and D(V || W|Q)+ H(V|Q) > R. However,

if @ and V satisfy Q -V = Px - W, then we have
DV |W|Q)+ H(V|Q) = HW|Px) = H(Y|X).

This implies E,(R, P, W) > 0 if and only if R > H(Y|X).
Next, we show (3). In a similar manner as in the proof of (1), by using (13)-(18),
we obtain
Pr{T,(X") < nR}

= Y PR(2)Pr{Tu(x) < nE}

xrckxn
< Y PR=) > W™ (yle)

TrTecxn Yeym:

Wn (Y| &) >exp(—nR)
< > exp{—n(D(Q || Px) + D(V || W|Q))}
QEPn,VEVR(Q):

D(V|WI|Q)+H(VIQ)<R

< (n+ 1)*H¥Wlexp{—nF(R, Px, W)},

which implies
1
1in_1>inf ——log Pr{T,(X"™) <nR}| > F(R,Px,W).
n—oo n
The reverse inequality can be obtained similarly by using the relation

Pr{T,(X") <nR}

v

n 1 n
S B Y W)
TrTecxn Yeym:
Wn(Y|&)>2 exp(—nR)

17



1
> = - ' : W)
D(V|WI[Q)+H(VIQ)<R-1/n

Lastly, F(R, Px,W) = 0 if and only if Q and V satisfy both Q -V = Px - W
and D(V || W|Q) + H(V|Q) < R. In such a case, H(W|Px) = H(Y|X) < R must

hold. Hence, we have F(R,Px,W) > 0 if and only if R < H(Y|X). 0

Proof of Theorem 3: Let W"(y|w) be the probability of obtaining the output
y € Y™ for a given input & € A™ by the interval algorithm with nR coin tosses.

Then, for y # 11---1,

. 2exp(—nR) if W"(ylz) > exp(—nR),
0 < W™(yle) - W(yle) < (19)
W (y|e) otherwise .

According to (19), for every sequence @ € X", we have

D W (yle) — W (yle)|

yeyn
= Y W le) -Wryl)l + | >0 (W (yle) - W(ylz))
Yeym: Yeym:
y¢11...1 y¢11...1
< 2 ) Wi(yle) - W (yle)|
Yeyn:
y¢11...1
< 4 Z exp(—nR) + 2 Z W™ (yl|e).
Yeym: Yeym:
Wn(Y|T)>exp(—nR) Wn(Y|L) <exp(—nR)

In a similar manner as in the proof of (1) in Theorem 2, we have

d(P}-W™ Pz -Wr)= > Pi(e)| W (yle) - W"(yle)|
(B, Yy)exnxy»

18



< 4 ) Pi(e) > exp(—nR) + > W™ (yle)
rean Yeym: Yeym:
W (Y|L)>exp(—nR) W (Y| L) <exp(—nR)
< 4(n+ )FIVH¥ exp{—nE, (R, Px, W)},
which implies (6). O

Proof of Theorem 4:  Since RC(W") = nR, we have
W™ (ylz) - W(yle)| > W(yle) if W(y|e) < exp(-nR)/2.
Hence, for every sequence & € Ty,

> W (yle) — W (yle)|

Yyeyn
> > W"(yle)
Yeym:
W (Y| &) <exp(-nR)/2
> (n+1)"*Plexp{—n ,oin | D(V || W|Q)}-
D(V||W|Q)+H(V|@)>R+1/n
This implies that
d(P} -W™PR-W") = > Pi(a)[W(yle) - W"(y|e)]
(B, Yy)exnxy»
> ~ x|yl n N -
> (n+1) Y. Px(Tg)exp{-n ,doin DV || WIQ)}
QEPn D(V|WI|Q)+H(V|Q)>R+1/n

> (n+ 1) ¥Vl expl B, (R+ 1/n, Px,W)}.

By using the continuity of divergence and entropy, we can obtain (7).

From (2) and (8), it is easy to see E,,(R, Px,W) > E.(R,Px,W). In what
follows, we investigate when the equality holds. First, rewrite E.(R,Px,W) as
follows.

E,(R, Px,W) = min[E,,(R, Px, W), E1(R, Px, W)], (20)

19



where

A .
B(RPx,W) & min o [R-H(VIQ)+ D@ Px))
D(VIWI|Q)+H(V|Q)<R
(21)
Obviously, we can see that
El(R,Px,W)Z R—logM, (22)

where the equality holds if and only if H(V|Q) = log M and Q = Px. However for

every V € M(Y|X) satisfying H(V|Px) = log M, we have

D(V ||W|Px)+ H(V|Px) =DV, || W|Px) + H(Vy|Px) = Ry.

Therefore, if R > Ry,

E,(R,Px,W) = R — log M.

On the other hand, note that —H(V|Q)+D(Q || Px) [resp. D(V || W|Q)+H (V|Q)]
is a convex (resp. linear) function of V for an arbitrary fixed Q. Then, for R < Ry,

the minimum of (21) can be attained at its boundary, that is,

Ei(R,Px,W) = _ min [R-H(VIQ)+D@| Px)
D(VIWIQ)+H(ViQ)=R
— QeM(X)r,I}flgM(yIX): D(Q 74 || Px - W)
D(VIIW|Q)+H(V|@)=R

The above equation and (8) implies E; (R, Px,W) > E,,(R, Px,W) for R < R,.

Hence, E,.(R, Px, W) = E,,(R, Px, W) whenever R < Rj. O

20



Proof of Theorem 5: For a given ® € A", according to the identity a + b =

la — b + 2min(a, b) and W"(y|®) < W"(y|a) for y # 11---1, we have

2- Y [W'(yle) - W"(y|=)]

Yyeyn»
= 2 ) min(W"(ylz), W"(ylz))
Yyeyn
< 2 > W™(ylz) +2W"(11---1|z)
Yeyn:Y#11..1
W (Y| &) >exp(—nR)
< 2 Z W"(y|e) + 2exp(—nR).

Yeyn:
W (Y |&)>exp(—nR)

Here, the last inequality holds either for the case W"(11-.-1|@) > exp(—nR) or

Wn(11.--1|e) < exp(—nR). Therefore,
2 —d(Pg -W"™, P} -W")

< 2 Z P% (=) Z W™ (y|e) + exp(—nR) |,

Tecxn Yeyn:
W (Y|L)>exp(—nR)

and in a similar manner as in the proof of (3) in Theorem 2, we can obtain
1 -
lim inf [—— log{2 — d(P} - W™, P} - Wn)}] > F(R, Py, W).
n—oo n
The reverse inequality comes from the relation

2- ) [Wi(yle) - W"(yle)] > min(W"(yle), W™ (yl2))
Yyeyn Yeym:
Wn(Y|L)>2 exp(—nR)

1
> an(y|w)-
Yeym:
Wn(Y|L)>2 exp(—nR)

v
X

v
X
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Proof of Theorem 6: First, we shall show the converse part. It is easy to see that

2- ) [W'(yle) - W (yle)] = 2 > min(W" (yle), W"(y|e))
Yyeyr yeyr
<20 ) Wi(yle).
Yeym:
W (Y|E) >0

Since W has a resolution nR, W " (y|®) must be positive for at most exp(nR)

sequences in V" for a given & € A™. Hence, we have
2 —d(Pg -W", Py -W")

< 2) Py(=) Y, W'yl
ern 'yey":
W (YIT)>0

< 2 ) exp{-nD(Q || Px)} ) exp{-nD(V|WI[Q)}

QEPn Veva(Q)

canin {1, 2R

2(n + )IFHXV expf{—n

IN

i DQ - V| Px - W
QGM(X?,méM(yIX)[ Q- VI Px-W)

+HHEVIQ) - BIT]}. (23)

For a fixed Q, S(Q) 2 {Ve MY|\X): HVI|Q) > R} is a convex set. If we restrict
the region of V to S(Q), D(Q -V || Px - W)+ H(V|Q) — R is a linear function of

V. Then, we have

VIEI};(%)[ @Q-V | Px-W)+[H(VIQ) - R[] ‘;{e(cl%l;lﬁ @Q-V] Px-W)

Therefore the region of taking the minimum for V in (23) may be restricted to

H(V|Q) < R, and we obtain

1 -
lim inf - log{2 — d(Px - W", Py - W™)}| > G(R, Px,W).

n—oo
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Next we shall show the achievability part. For any € Tg, we can select a
conditional type V' € V(Q) such that exp{nH (V'|Q)} < exp(nR) and V' minimizes
D(V'" || W|Q). Then, we can choose a set T () satisfying both T(x) C Ty («) and
|Ty+(=)|/3 < |T(x)| < |Ty(2)|/2. By using the set T (), we assign the conditional

probability W (y|) as follows. For y € T (=), we assign

W (yle) = {%J exp(-nR) or Q%J + 1) exp(—n)

such that

Z (yle) =1,

YT (x)

where |z| denotes the maximum integer less than or equal to z. On the other
hand, we assign W (yl®) = 0 for y ¢ T(z). Obviously, R.(W") = nR. Since

2T (w)| < |Ty+(2)| < exp{nH (V'|Q)} < exp(nR), we have

2exp(nR)
|Tv ()|

1

Ty = Wle)

W (le) > ( - 1) exp(~nR) >

for every y € T(x). Hence, by using the above inequality and the identity a + b =

|a — b| + 2min(a, b), we have

2- ) W' (yle) - W (yle)]

Yyeyn
= 2 Y (W'(yle) + Wr(yle) +2 Y min(W" (ylz), W"(yle))
yeyn yeyn
= 2 ) min(W"(yle),W"(ylz))
yeyr
= 2 Z W"(yle)
yeT(x)

v

W (T ()] )
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v

2

2 1Y expf—n mi W

g(n+1) exp{-n min D(V || W|Q)},
H(VIQ)<R

where the last inequality follows from the choice of V'. This implies that

2 d(PE-W",P2-W™)
2
> 5+ )T W exp{—n min D@ || Px)}

xexp{—n min D(V | W|Q)}.
H(V|Q)<R

Therefore, we have

1 —=n
limsup - log{2 - d(Px -W",Px -W")}| < G(R,Px,W).

n—oo

V. Performance analysis of random number generation by interval

algorithm

If the input sequence ® € A™ consists of one symbol, i.e. ® = 11---1, the proposed
algorithms generate sequences of an ii.d. source with a distribution W(-|1). In
such a case, the first algorithm can be reduced to the original interval algorithm
for random number generation [3], and our analysis can be directly applied to the
original interval algorithm.

Consider the case where the interval algorithm is used as random number gener-
ation of an i.i.d. source with a generic distribution Py. Then, Theorem 2 indicates
a large deviations performance of the interval algorithm for random number gener-

ation. Especially, the number of coin tosses T, necessary to generate a sequence in
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Y™ satisfies

1
lim —T,=H(Y) a.s. (24)

n—oo n

Remark 1: As for the random number generation, Han and Hoshi have already
shown that the average number of coin tosses per output sample approaches H(Y')
[3]. On the other hand, Theorem 2 clarifies that the number of coin tosses per

output sample approaches H(Y) with probability one, which is not implied in [3].

The second algorithm can be used as random number generation with specified
number of coin tosses. In this situation, the random number is generated not ex-
actly but approximately within a nonzero but arbitrary small tolerance in terms of
variational distance. Such random number generation has been studied by Han and
Verdi [2], but the rate of convergence in terms of variational distance has not yet
been investigated even for an i.i.d. source. On the other hand, the performance
analysis for the second algorithm gives some fundamental solutions for the rate of

convergence. The next three corollaries are direct applications of Theorems 3-5.

Corollary 2: If the interval algorithm with nR coin tosses is used as random

number generation of an i.i.d. source with a generic distribution Py, then we have

lim inf —llogd(P{;,P;) > E,(R, Py), (25)
n

n—oo

where 13{} denotes the output distribution of the interval algorithm with nR coin

tosses and

E(R Fy) £ min [D(@ | Fr)+ R~ H@) - D@Q| B)I*l.  (26)
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Further, E(R, Py) > 0 if and only if R > H(Y).

Corollary 3: Let 15{} denote any probability distribution with its resolution

R(P}) = nR. Then, for a given distribution Py € M(Y),

lim sup —llogd(P{},P{}) < E, (R, Pr), (27)
n—oo n
where
A .
Ep(R,Py)=  min D@ Fy). (28)

D(Q|IPy)+H(Q)2R

Further, E,,(R, Pv) > E,(R, Py) and equality holds for R < R, where
A
R, = D(Q, || Pr) +log M, (29)

and Q,(b) 2 1/M for every b € ).

Corollary 4: If the interval algorithm with nR coin tosses is used as random

number generation of an i.i.d. source with a generic distribution Py, then we have

1 -
lim |-~ log{2 — d(Py, P})}| = F(R, Py), (30)

n—oo

where 13{} denotes the output distribution of the interval algorithm with nR coin

tosses and

A

F(R, Py) min  D(Q] Py). (31)

QeEM(Y):
D(Q|lPy)+H(Q)<R
Further, F(R, Py) > 0 whenever R < H(Y).
These corollaries indicate the following properties of the interval algorithm for

random number generation: (1) If the number of coin tosses per input sample

is above resolvability H(Y), the approximation error measured by the variational
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distance vanishes exponentially as the block length tends to infinity. Further, the
interval algorithm achieves the optimum error exponent, when the number of coin
tosses per input sample is less than R,. (2) If the number of coin tosses per input
sample is below the resolvability, the approximation error approaches the value of
two exponentially.

The last corollary is a direct consequence of Theorem 6 and clarifies the optimum

exponent below the resolvability.

Corollary 5: Let Py denote the distribution which minimizes the variational

distance d(Pg, Py) under the condition R.(Py) = nR. Then,

1 —n
lim |- log{2 - d(P}, P})}| = G(R, Py), (32)

n—oo
where

a

G(R,Py) 2 min D(Q || Py). (33)

QeEM(Y):
H(Q)<R

From Corollaries 4 and 5, we can conclude that the interval algorithm with nR

coin tosses is not optimum for R < H(Y).
VI. Conclusion

We have proposed two algorithms for channel simulation based on the interval algo-
rithm. The first algorithm provides an exact channel simulation, while the second
one provides an approximate channel simulation. We have clarified some asymp-
totic properties of these algorithms as well as the random number generation by
the interval algorithm. Regarding future research, we shall generalize our results to

more complex channels, such as channels with memory.
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