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[PAPER

Universal Variable-to-Fixed Length Codes
Achieving Optimum Large Deviations Performance for

Empirical Compression Ratio

SUMMARY  This paper clarifies two variable-to-fixed length
codes which achieve optimum large deviations performance of
empirical compression ratio. One is Lempel-Ziv code with fixed
number of phrases, and the other is an arithmetic code with fixed
codeword length. It is shown that Lempel-Ziv code is asymptoti-
cally optimum in the above sense, for the class of finite-alphabet
and finite-state sources, and that the arithmetic code is asymp-
totically optimum for the class of finite-alphabet unifilar sources.
key words: source coding, variable-to-fized length code, empiri-
cal compression rate, finite state source

1. Introduction

Comparisons between lossless variable-to-fixed (V-F)
length codes and fixed-to-variable (F-V) length codes
have been done by many researchers. Especially, Ziv [1]
has shown that for Markovian sources with long memo-
ry there exists a V-F length code that provides a better
compression ratio than any F-V length code with the
same number of codewords. Tjalkens and Willems [2]
have proved similar results for universal coding of bi-
nary memoryless sources. Finally, Merhav and Neuhoff
[3] have shown that for unifilar sources the best V-F
length code provides a better large deviations perfor-
mance than any F-V length code with the same number
of codewords. Especially, they have considered a ran-
dom variable, referred to as the empirical compression
ratio (ECR), which is defined as the length in bits of
the encoder output word divided by the length in bits of
the input word. It has been shown that the exponential
decay rate of the probability that the ECR exceeds R,
for the best V-F length code, is 1/R times faster than
that of the best F-V length code with the same number
of codewords.

In this paper, we clarify that for finite-state sources
Lempel-Ziv (LZ) code [4] with fixed number of phras-
es achieves the optimum large deviations performance,
more precisely, asymptotically minimizes the probabili-
ty that the ECR exceeds R among V-F length code with
the same codelength. Further, for unifilar sources, an
adaptive version of arithmetic codes [5]-[8] with fixed
code length also achieves the optimum large deviations
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performance.

Of related works, we mention the following two re-
sults. Teuhola and Raita [9] proposed a V-F code using
an arithmetic coding, which was very similar to our
proposed code. However, they were interested in the
practical performance of the coding and did not inves-
tigate its asymptotic performance. Visweswariah and
Kulkarni [10] have proposed an universal V-F code for
the class of Markovian sources which is asymptotically
optimum. However, their criterion of optimality is not
ECR but redundancy.

2. Optimum Code for Finite-State Sources

Let ® = z129---x;---z, be a sequence of observable
random variables taking values in a finite alphabet X.
Similarly, let s = s183---8;---s, be another sequence
of random variables, called states, which take values in
another finite set §. A probabilistic source P is called
finite-state (with |S| states) if
n
P(z,s) = [ P, silsi-1), (1)
i=1
where P(@;, s;|s;—1) is the joint probability of a letter
z; and a state s; given the previous state s;_1, P(®,s)
is the joint probability of # and s, and sg € S is a fixed
initial state. The class of finite-state sources with no
more than S states will be denoted by Py

Let X" denote the set of all words over alphabet
X. A set of words Z C X* is said to be prefix set. We
require it to be proper and complete. Properness of the
prefix set implies that no word in Z is a prefiz of any
other word in Z. Completeness guarantees that each
infinite sequence zixs--- has one and only one prefix
that belongs to Z. Any prefix set Z can be represented
by a complete |X|-ary tree T(Z), where T'(Z) has Z as
the set of terminal nodes (cf. e.g. [11]).

A V-F length code f: X* — {0,1}" can be char-
acterized by a prefix set {X1, Xs,---,Xny} C X* with
N(L 2™), which can be represented by a complete |X|-
ary tree T,, with N terminal nodes, and the one-to-
one mapping from each prefix (or terminal node) X;
(¢ = 1,2,---,N) to binary codeword of length n bit-
s. From the definition, it is obvious that every infinite
word X has one and only one prefix X; € T,,. In what



follows, for infinitely long sequence X, we shall adopt
the notation £(X) as the length of the prefix of X in

T, namely £(X) 2 £(X;) where X; is the prefix of X
in T,. Then, the empirical compression ratio (ECR)
associated with a V-F length code f : X* — {0,1}"
and an infinite source sequence X is defined as
AN
ps(X) = “(x)

Given a finite-state source P and a constant R >
0, we consider a problem to find a V-F length code
f: X" — {0,1}" that minimizes the probability that
the ECR exceeds R, defined as

Pr{ps(X)>R}2 ).
EcTy:L(®)>nR
where P(2) = > 550 P(®,s) and P(e,s) is in (1). It
is assumed that H(P) < R < log, |X|, where H(P) is
the Shannon entropy, which for a stationary source is
given by

P(e),

|
:—nlin;o; Z P(z)log P(=).
zex™

H(P)

Now, consider following V-F code which is a V-F
version of the Lempel-Ziv code [4].

LZ code with fized codelength frz : X* — {0,1}"=

1) (Initialize) Let m(> 1) be an integer which speci-
fies the codelength. Let #1245 --- ;- -- be an output
sequence of the source. Then, let w(l) + @1, j « 1
and i; « 1. Output z; in [log, |X|]-bit f.

2) (Parsing) Suppose w(1)---w(j) = z1--- =;;.

(1) If 25,41 & {w(1),---,w(s)} then w(j + 1) «
®;, 11 and p < 0.

(i) Otherwise, w(j + 1) = ;41 -- ®x41, where k
is the least integer greater than 2; such that
Ti;41- -2, = w(p) for some 1 < p < j and
Zi41 - T & {w(l), -, w(z)}-

3) Output a pair (p, #x11) in [log,(j + 1)|X|]-bit. If
j<mthen <+ j+1, 4 < k+1 and go to 2).
Otherwise, terminate the algorithm. ad

The codelength of this code is given by n,, 2
Z;n:l [log, j|X|]. The following theorem establishes
the asymptotic optimality of the LZ code in the sense
of minimum probability of the ECR exceeding R.

Theorem 1: For every finite-state source P € Pg, any
V-F length code f : &* — {0,1}* with ECR p;(X),
every R € (H(P),log, |X]), and all large m,
Pr{prz(X) > R + €([nm/R])}
< (14 n([nm/R]))Pr{p; (X) > R},

[z] denotes the minimum integer greater than or equal
to z.
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where prz(X) is the ECR of LZ code with a fixed
codelength 7n,, n(n) = 7?2 "/VI8" and e(n) =
O(1/+/Togn) is a positive sequence depending on X" and
S.

Theorem 1 states that the LZ code achieves the op-
timum ECR performance, i.e. the best large deviations
performance.

Before the proof of Theorem 1, we introduce a
proposition obtained by Merhav [12] which shows the
dual result of ours. That is, LZ code yields the shortest
length, uniformly for every sufficiently long sequence @,
among all information lossless F-V codes for any finite-
state source.

Proposition [12, Theorem 1]: For any F-V length code,
let L,(®) denote the codelength for (€ AX™). Then,
for every B € (H(P),log, |X|), every finite-state source
P € Pg, and all large n,

Pr{e € X" : n 'Upz(x) > B+ ¢(n)}
< (14 9(n))Pr{e € X" : n ' L,(2) > B},
where Upz(#) denote the codelength of LZ code (when

used as F-V code) for a sequence & € X", while 7(n)
and €(n) are given in Theorem 1.

Proof of Theorem 1: It is easy to see

Pr{psz(X) > B}

= Pr{e € X["~/Bl . Uy ;(2) > R[n/R]}

= Pr{@ € X["/B : ([n,,/R]) ULz (=) > R}.

(2)

On the other hand, let us consider any V-F length
code f : X* — {0,1}"= with a complete prefix tree
T, . By using the method introduced by Merhav and
Neuhoff [3, Proof of Theorem 2] (see also Appendix),

we can construct a F-V code C,, with block length
[/ R] from a given V-F code f such that

Pr{e € T}, : () < nm/R}

= Pr{e € X"/E ; [(2) > np}
where L(2) denotes a length of codeword in C,,, cor-
responding to ®(€ X"~/ Hence,

Pr{ps(X) > R}

=Pr{ecT,, :{e) < n,/R}
Pr{z ¢ X["/El ; [(2) > n,}
Pr{e ¢ XI"~/El : ([n,,/R])"'L(=) > R}

1
1+ n([nm/R])
([nm/R1) " Urz(2) > R+ e([nm/R])},

NV

1%

Pr{z ¢ X/"=/81 ;

where the last inequality comes from Proposition.
Combining this and (2) yields the theorem O
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3. Optimum Code for Unifilar Sources

In this section, we restricted our attention to a unifilar
source with a finite alphabet X = {1,2,---, M} and a
generic distribution P. For unifilar sources, the state
s; at time instant 7 obeys the recursion

s = (=i, 8i-1),

where f : X xS — S is a known deterministic mapping.
Further, we assume that the initial state sq is fixed, and
clearly we can reconstruct the state sequence s recur-
sively by observing the output sequence . Hence, for
a fixed initial state sg, the probability of a given source
sequence & = x1&y- - - Ty 1s given by

n

P(z) =[] P(x:lsi-1).

=1

For unifilar sources, Merhav and Neuhoff [3] have
shown that the optimum V-F length code provides the
exponential decay rate of the probability that the E-
CR exceeds R. Combining this result and Theorem 1,
we conclude that the LZ code with a fixed codelength
can universally achieve the optimum exponential decay
rate as the codelength tends to infinity. In what fol-
lows, we demonstrate that another simple V-F length
code, namely, an adaptive arithmetic code with fixed
codelength can also achieve the optimum exponential
decay rate.

First, we shall describe the encoding algorithm.

Fundamental encoding algorithm f, : X* — {0,1}"
1) (Initialize) Let X « 0, Y « 1, i « 1, s «

0717"'7M; V§ES)

2) (Encoding of the ith symbol) When ®; = &, set

X « X+4Y % Fp_1(s)/u(s),
Y « YV *(Fr(s)— Fr_1(3))/u(s),
L « [—log, Y +1log,(i + M)].
If L £ n then go to step 3). Otherwise find an

n-bit binary fraction z such that z € [X, X +7Y),
and output z, and terminate the algorithm.

3) Set F;(s) « Fi(s)+1(j =k,k+1,---,M) and
u(s) « u(s) + 1. Then, set s « %(z;,s) and
i+ 1+ 1. Go to step 2). a

Next we shall describe the decoding algorithm.
Fundamental decoding algorithm ¢, : {0,1}" — X*

1) (Initialize) Let X « 0, Y « 1, i « 1, s «
so, w(8) « M (V5 € S) and F;(3) = j (7 =
0,1,---,M; Vi € §). Further, let Z be the n-bit
fractional number corresponding to the codeword.

2) (Decoding of the ith symbol) Find an index k €
{1,2,---, M} such that X +Y % F,_1(s)/u(s) £
Z < X +Y % Fy(s)/u(s), and output k as the ith
symbol. Set

X « X4Y % Fp_1(s)/u(s),
Y « Y% (Fr(s) — Fr_1(3))/u(s),
L + [—logy Y +1logy(i + M)].

If L < n then go to step 3). Otherwise terminate
the algorithm.

3) Set Fj(s) « Fj(s)+1(j =k,k+1,---,M) and
u(s) < u(s) + 1. Then, set s « o(x;,s) and
i+ 1+ 1. Go to step 2). a

Remark 1: The above algorithm is an adaptive arith-
metic coding using Laplace’s law of succession (see e.g.
[13], [14]) for the estimation of the generic distribution
P of the unifilar source. It should be noted that the
variable L is introduced in order to check if the next
input symbol can be encoded into the same codeword.

Next theorem shows the asymptotic performance
of the proposed codes.

Theorem 2: The probability that the ECR of the pro-
posed code f,, : X* — {0,1}" exceeds R satisfies

n—r oo

lim inf [—1 log, Pr(py, (X) > R)]
n

2 — min

2 R o D@D, (3)

where the minimum is taken over all probability mass
functions @ over X x 8, and

HQ) 2 =3 Y 0(a, 5)log, Q(als),

sESeEX

3 e, ) logy A,
rcseck (z[s)
with Q($|5) = Q(a:, 5)/2368 Q(a:,s).

Merhav and Neuhoff [3] have shown that any se-
quence {f,} of V-F length code f, with 2" codewords
satisfies

(e

D(Q || P)

1
lim sup |——log, Pr(py,(X) > R)
n—00 n
1
< — min

D P).
< Zomin_ D(@]| P)

Hence, the proposed code can universally achieve the
optimum exponential decay rate, as the codelength n
tends to infinity. It should be noted that Merhav and
Neuhoff have also constructed a code achieving the op-
timum exponential decay rate [3]. However, their code
is based on the enumerative code and is not practical
from the viewpoint of complexity for encoding and de-
coding.



Proof of Theorem 2:  For a sequence & € ™, z € X

and s € S, let
1 m
g (z,8) = m Zﬂ%’ =z,8i-1=3),
i=1
where 6(z; = z,8,_1 = ) is the indicator function

for #; = @ jointly with s;_; = s. Also, let gp(s) =
Zzex qz(z,s) and
_ | awe(2,5)/q2(s); qm(s) >0
aa(els) = { 0 gz (s) = 0.
We denote by Qg the empirical distribution

Qe é{q;c(a:,s)::1:62(',565}.

Consider a sequence ® € X™ of empirical distri-
bution Q. If # (and its following symbols) can be
encoded into one codeword, the value of Y after read-
ing & satisfies

(M — WTT}L, (mge (3, 9))!
v=1I (maz(s) + M — 1)!

s€S
1 (maa(s)+ M — 1\ T IIL, (maz (5, 9))!
‘Q( M- 1 > (mga(s))!

> (m+ M~ 1" D] exp{—mH(Qa)}. (4)

Then, the probability that a sequence in X™ is encod-
ed into a sequence of more than mR bits can be upper

bounded by
Pr{e € X™ : {(f(=)) = mR}
< )3 exp{-mD(Q || P)}

QEPm:
[—logs Y +logs (m+M)|>mR

< (m+ 1)MI8lexp{— Jin - mD(Q || P)},

— logy Y4logs (m-FM)+12mR
(3)

where P,, denotes the set of all empirical distribu-
tions for A™, and the last inequality comes from
|Pm| < (m + 1)I¥ISI. By using (4), the condition
—log, Y +logy(m + M) + 1 > mR implies

H(Q) + 1m = R, (6)
where

T 2 m7H(M — 1)|S|logy(m + M — 1)
+logy(m + M) + 1}.

By choosing n = mR and combining (5) and (6), we
obtain

1
—logy Pr(py, (X) > R)

- _%IO& Pri{z € X*/%: {(f(=)) > n}
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S _ M|S|log(n/R +1)

n
1 :
+p  amin - D(@]P),

H(Q)+nm 2R

which implies (3). a
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Construction of F-V length code
from V-F length code

Appendix:

For the completeness, we describe a method introduced

in [3].

1) Let Ty, be a complete |X|-ary tree corresponding to
a given V-F length code with N (< 2™) codeword-
s. All words X; with length £(X;) = n/R can be
shortened to [n/R], by pruning all subtrees with
roots at depth [n/R]. Then, we have a modified
tree T with all words no longer than [n/R], and
with probability Pr{{(X) < n/R} is equal to that
of the original code T,,.

2) Every word X with length {(X) < n/R is extend-
ed to [n/R] by all |X|[*/E1-4X) possible suffix-
es, and accordingly, the n-bit codeword for this
word is also extended by all possible (([n/R] —
£(X))[log X'])-bit suffixes. Then, we have a F-V
length code C,, with block length [n/R] and with
length function L(X).

Note that the event £(X) < n/R for T, is equiva-
lent to the event L(X) > n for C,.
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