Weak Variable-Length Slepian-Wolf Coding
with Linked Encoders for Mixed Sources

Akisato KIMURA* Tomohiko UYEMATSUT

Final version

August 25, 2003

*A. Kimura was with the Department of Communications and Integrated Systems, Tokyo Institute of
Technology, Ookayama, Meguro, Tokyo 152-8552, Japan. He is now with NTT Communication Science
Laboratories, NTT Corporation, Morinosato Wakamiya 3-1, Atsugi-shi, Kanagawa 243-0198, Japan (E-mail:

akisato@eye.brl.ntt.co.jp).
IT. Uyematsu is with the Department of Communications and Integrated Systems, Tokyo Institute of

Technology, Ookayama, Meguro, Tokyo 152-8552, Japan (E-mail: uyematsu@ieee.org).



Abstract: Coding problems for correlated information sources were first investigated by
Slepian and Wolf. They considered the data compression system, called the SW system,
where two sequences emitted from correlated sources are separately encoded to codewords,
and sent to a single decoder which has to output original sequence pairs with small probability
of error. In this paper, we investigate the coding problem of a modified SW system allowing
two encoders to communicate with zero rate. First, we consider the fixed-length coding and
clarify that the admissible rate region for general sources is equal to that of the original SW
system. Next, we investigate the variable-length coding having the asymptotically vanishing
probability of error. We clarify the admissible rate region for mixed sources characterized
by two ergodic sources and show that this region is strictly wider than that for fixed-length
codes. Further, we investigate the universal coding problem for memoryless sources in the
system and show that the SW system with linked encoders has much more flexibility than
the original SW system.

Index terms: admissible rate region, average length of codewords, linked encoders,

mixed source, weak variable-length code,



I. Introduction

Coding problems for correlated information sources were first investigated by Slepian and
Wolf [1]. They considered the data compression system, where two sequences of length n
emitted from correlated sources are separately encoded to nR; and nR, bit codewords, and
sent to a single decoder which has to output original sequence pairs with small probability of
error. Slepian and Wolf established the admissible rate region (called the SW region), namely
the closure of the set which consists of the rate (R;, Ry) such that the error probability of
decoding can be made arbitrarily small by letting n to be large. Their coding theorem may
be regarded as a substantial starting point of multiterminal information theory, and many
variations of their data compression system have been investigated. After the original proof
of coding theorem by Slepian and Wolf, Cover [2] showed a simple proof based on the random
coding argument called bin coding. Recently, Miyake and Kanaya [3] extended the coding
theorem to the class of non-ergodic or non-stationary sources called general sources by using
the method developed by Han and Verda [4, 5].

In the system of Slepian and Wolf (called the SW system) neither of the encoders can
observe the codeword generated by the other encoder. Kaspi and Berger [6], Ericson and
Korner [7] have studied the case where one of two encoders can observe not only the sequence
from its own source but also the codeword generated by the other encoder. Recently, Oohama
[8] has investigated a more general case where there are some mutual linkages between two
encoders of the SW system. He called this system the SWL system in the sense of an SW
system having the linkage of two encoders. Especially, Oohama considered the case where
two encoders can observe the codeword generated by the other encoder, and determined
the admissible rate region. However, this coding problem allows encoders always to see the
codeword of the other encoder, and is rather different from the original coding problem of
the SW system, i.e. separate encoding and joint decoding problem. This motivates us to
study the other aspect of the SWL system.

In this paper, we investigate the coding problems for the SWL system, where the coding
rate for the mutual linkage between two encoders is negligible. This SWL system can be
regarded as a generalization of the original SW system allowing two encoders to communicate
with zero rate. First, we consider the fixed-length coding for general sources, and clarify that
the admissible rate region is equal to that of the SW region. This shows that the linkage

does not reduce the rate of fixed-length codes. Next, we investigate the variable-length



coding having the asymptotically vanishing probability of error, and call it the weak variable-
length coding [9]. We clarify the admissible rate region for mixed sources characterized
by two ergodic sources, and show that this region is strictly wider than that for fixed-
length codes. This result contrasts with that for the fixed-length coding. Even though
the rate of the mutual linkage is zero, this linkage is enough to distinguish which ergodic
source the input sequence is typical for, and effectively reduces the coding rate. Further, we
investigate the universal coding for memoryless sources in the SWL system, and show that
the arbitrary coding rate in the admission region depending on the source can be attained by
the weak variable-length code. In case of universal coding, the linkage is used to estimate the
probability distribution of the source, and gives drastic flexibility to variable-length coding.
The organization of this paper is as follows: In Section II, we describe some coding systems
for correlated sources and the formulation of the problem. Then, we clarify the admissible
rate for the fixed-length coding. In Section III, we show main results without proofs, and

give their proofs in Section IV.
II. Coding Systems for Correlated Sources

(a) Basic Definitions
Let X and Y be finite sets and B be a binary set. Without loss of generality, we assume
that ¥ =Y = {1,2,--- , M} and B = {0,1}. We denote a set of all sequences of finite length
by B*. Let (X,Y) = {(Xj,Yj)};il be a stationary-ergodic process of random variables
(X;,Y;) (j = 1,2,---) which takes values in X x Y. Then, both X = {Xj};il and Y =
{Y;}52 | are stationary-ergodic processes. We shall call X and Y ergodic sources, and (X,Y)
J_

correlated ergodic source. The entropy rate of an ergodic source X is defined by

1
lim —H(X™)

n—oo N

1
= hm —H(Xl,XQ,"' 7Xn)7

n—oo N

[l

H(X)

where H(X;,Xs, -+ ,X,) denotes the entropy as defined in [10]. Similarly we define the



joint entropy rate and the conditional entropy rate for a correlated ergodic source (X,Y’) by

[l

lim L H(X", V")

n—oo N

1
= lim —H(Xl,X2,“‘ ,Xnylflaléa"' 7Yn)7

n—oo M,

1
lim —H(X"|[Y™),

n—oo N

1
lim —H(Y"|X"™),

n—oo N

H(X,Y)

[l

H(X|Y)

[l

H(Y|X)

respectively. In what follows, all logarithms and exponentials are to the base two.
Next, we show the formal definition of general correlated sources [4, 5]. The general

correlated source is defined as an infinite sequence

(X,Y) = {(X",Y") = (X1, v), - (XM, v,

n

of n-dimensional random variables, where each component random variable (Xi(n), Yi(n)) (1<
¢ < n) takes values in X x Y. It should be noted here that each component of (X",Y")
may change depending on the block length n. This implies that the sequence (X,Y) is
quite general in the sense that it may not satisfy even the consistency condition, where

the consistency condition means that for any integers m,n such that m < n it holds that

(Xi(m), Yi(m)) = (Xi(n), Yi(n)) for all 2 =1,2,--- ,m. The class of sources thus defined covers a
very wide range of sources including all nonstationary and/or nonergodic sources. A typical
example of the general correlated source is a correlated mixed source described below.

A correlated mized source (X,Y) is defined by the following distribution:
Py(z,y) = aP{(2,y) + (1— )PP (2,y)  V(z,y) € X" x Y7, (1)

where 0 < a < 1 and P (¢ = 1,2) are distributions of the jointly ergodic process
<X(’;), Y(’;)> = {(X(i)j, Y(i)j) }::1. Further, we introduce the notation

A o )
(X@,Y@) = {(X(i)jay(i)j) }jzl (1 =1,2).

The correlated mixed source is an example of a general source which satisfies the consistency

condition.

(b) Slepian-Wolf Coding System
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Figure 1: Slepian-Wolf coding system

Slepian and Wolf [1] studied the coding problem for two correlated sources, where two
sequences from correlated sources are separately encoded, sent to a single decoder which
has to output original sequence pairs (Figure 1). We call this data compression system the
Slepian- Wolf system (the SW system).

Definition 1: A sequence {(90511),90512),90;1)};?:1 of codes (90511),90512),90;1) is called a (fized-

length) SW code, if the encoders 90511) i Ms), 90512) Pyt = Mﬁf), and the decoder
o1 MS) X Mﬁf) — X" x Y" satisfy

lim Pr{p, (¢ (X"), 07 (Y")) # (X", Y")} =0, (2)
n—oo
where MY = {1,2,--, M{"} and M = {1,2,---, M} 0

Definition 2: A rate pair (R, R») is admissible for the SW system, if there exists a SW

code which satisfies

1
lim sup — log M,(ll) < Ry,

n—oo 1
1
lim sup — log M,(f) < R,.
n—oo 1
O
Definition 3 (The SW region): The SW region Rgw(X,Y) is defined as
Rsw(X,Y) = {(R1, Rs) : (R1, Ry) is admissible for the SW system}.
O

Miyake and Kanaya [3] investigated the SW system for two correlated general sources

and clarified the SW region as follows:



Theorem 1 [3]: For any correlated general source (X,Y),
RSW(.X,Y) == {(R]_,R2) H Rl Z H(.X|Y), R2 Z H(Y|X),

R+ Ry, > H(X,Y)},

where H(X,Y') is the joint sup-entropy rate [5] defined by

— 1 1
H(.X,Y) é 1nf{anh_>noloPr{;logW>a}:0},

H(X|Y) and H(Y|X) are the conditional sup-entropy rate [5] defined by
AX|Y) 2 infla:timpPrdll L oalog
= infqa: lim Pro—log P (X7 ar=0,,

respectively. a

The next corollary can be obtained immediately from the definition of sup-entropy rate
[5].

Corollary 1: If (X,Y) is a correlated ergodic source, then

Rsw(X,Y)={(R1,R:) : R, >H(X|Y), R, > HY|X),
R+ Ry > HX,Y)}.

Further, if (X,Y) is a correlated mixed source, then

Row(X,Y) = {(R1,Ry) : Ri>max(H(Xy)|Y 1)), H XY @),
Ry > max (H(Y(1)|X(1)),H(Y(2)|X(2))) ’
Ry + Ry > max (H(X (1), Y (1)), H(X (2, Y (3))) }-

(c) Slepian-Wolf Coding System with Linked Encoders
Oohama [8] considered the coding problem for correlated sources, where two separate
encoders of the SW code are mutually linked as shown in Figure 2. We call this compression

system the SWL system in the sense of an SW system having the linkage of two encoders.
First, we define the fixed-length coding for the SWL system (called f~-SWL system).

7
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Figure 2: Slepian-Wolf coding system with linked encoders

Definition 5: A sequence {(p{", o{>), o7V, 07V or1)12  of codes (4", o5, &Y, o) oo1)

is called a fized-length SWL code, if the encoders

9057,11) S M'Elll))
905112) - X % M&?l) N M&l?),
9057,21) . yn N M£l21)7
905122) . yn > M'Elll) N M£L22)7

and the decoder go;l : Ms?) X Mﬁ?” — X" x Y™ satisty

lim Pr{e, (o0 (X7, oY), (Y™, oD (X™))) # (X7, Y™} = 0. (3)

n—oo

a

Definition 6: A rate pair (R, Rs) is admissible for the f-SWL system, if there exists a
f-SWL code which satisfies
1
lim sup — log M}lll) = 0,

n—oo N

1
lim sup — log M}l?l)
n—oo 1T (4)

Il
=)

A
=

lim sup — log M{1?)

n—oo 1

1
limsup — log M) < R,.

n—oo N

a

It should be noted here that we consider the case where both rates of the first encoders

905111) and 905121) are zero. This implies that the outputs of the first encoders can be provided to

8



(12)

the decoder with zero-rate as suitable prefixes in the outputs of the second encoders ¢,,*’ and

(22)

¢r . Hence, even if the outputs of the first encoders are directly provided to the decoder,
the admissible rate region remains the same. On the other hand, Oohama [8] considered

(12) (22)

the opposite case where both rates of the second encoders ¢, * and ,, "’ are zero, and the

decoder can see the outputs of the first encoders.

Definition 7: A rate pair (R, R») is admissible for the f-SWL system, if there exists a
f-SWL code which satisfies (4).

O
Definition 8 (The f-SWL region): The f-SWL region is defined as
Rswi(X,Y) = {(R1,Rs) : (R1, Ry) is admissible for the {-SWL system}.
O
The next theorem clarifies the f-SWL region.
Theorem 2: For any correlated general source (X,Y),
Rswi(X,Y)
= {(Ri,Ry): R, > H(X|Y), R, > HYY|X), Ry + R, > H(X,Y)}.
O

The proof of Theorem 2 is given in Appendix.

Comparing Theorem 1 and Theorem 2, we have
Rswi(X,Y) =Rsw(X,Y)

for any general source (X,Y). This implies that the region of admissible rate pairs does not
expand even if there are mutual linkages between two encoders.

The next corollary can be obtained immediately from Theorem 2 and Corollary 1.

Corollary 2: If (X,Y) is a correlated ergodic source, then

Rswir(X,Y)
— {(Ri,Ry): R, > H(X|Y), R, > H(Y|X), R + R, > H(X,Y)}.



Further, if (X,Y) is a correlated mixed source, then
Rewr(X,Y) = {(Rl,Rz') t Ry = max (H(X )Y ), HX 9|Y (),

Ry > max (H(Y ()| X (1)), H(Y (9| X (2))) ,
R, + R, > max (H(X(1),Y(1))aH(X(2)7Y(2))> }

(d) Weak Variable-Length Coding

We define weak variable-length coding for the SWL system (called the wv-SWL system).

(12)  (21) (22 (11)  (12)  (21) (22)

. 11 Z1\7 00 _
Definition 9: A sequence {(9051 )aSDn 1Pn Ty Pn )790n1)}n:1 of codes (¢n "y n ,¢n  ,¢n a@nl)

is called a wv-SWL code, if the encoders

e .y B,
P X x PPNV - B,
S0 Ly B
el s Y x (X — B,

and the decoder ¢ ' : B* x B* — X™ x V" satisfy the following conditions:

1. The images of 90(11), ©12) 905121) and 905122) are all prefix sets.

2. lim Pr{p;" (ol (X", o) (Y™), oZ(Y",00D(X")) # (X" Y")} = 0. (5)
O

Definition 10: A rate pair (R, Rs) is admissible for the wv-SWL system, if there exists a
wv-SWL code which satisfies

1
lim sup —E[I({V(X™))] = 0,
n— oo 7{
lim sup ~ E[l({M(Y™))] = 0,
! n—soo N (6)
limsup — F [1(905112)()(”7905121)(1[71)))] < R,
n—oo T
1
lim sup —F [l(gof?)(Y 79051 )(Xn)))] < I,
n—oo T

where E[-] denotes the expected value and [ : B* — {0,1,-- -} denotes the length function.
O

10



Definition 11: A rate pair (Ri, R») is admissible for the wv-SWL system, if there exists a
wv-SWL code which satisfies (6). O

Definition 12: (The wv-SWL region) The wv-SWL region Ry (X,Y) is defined as

Rewr(X,Y) = {(R1, R2) : (R1, R2) is admissible for the wv-SWL system}.

ITI. Main Results

In this section, we shall clarify the wv-SWL rate region for correlated mixed sources. The

next theorem is our main result.
Theorem 3: If (X,Y) is a correlated mixed source, then
Swi(X,Y) = {(BL,Ry) 5 Bi> aH(X @Y (1) + (1 - ) H(X )Y ),
Ry 2 aH(Y (1) X (1)) + (1 = @) H(Y (3| X (),
Ri+ Ry > aH(X 1), Y (1)) + (1 - O‘)H(X@),Y(?))}-
O
According to Theorem 3 and Corollary 2, we conclude that the wv-SWL region strictly
includes the f-SWL region, i.e.

Rowr(X,Y) D Rswi(X,Y)

for any correlated mixed source (X,Y’). This implies that wv-SWL code can achieve strictly
lower coding rate than -SWL code.

It is instructive to note here how to construct the wv-SWL code. For a given rate
(R, Ry) € Rewr(X,Y), we can find two rate pairs (Ri1, Ri2) € Rsw(X),Y 1)) and
(R21, Ra2) € Rsw(X (1), Y (1)) such that

Ry, = aR;+(1—a)Ry,
R2 = aR12 + (1 — a)RQQ.

Then, we prepare two SW code. One is (f,(Ll), f,(f), f!) for the source (X (1), Y (1)) with rate
(R11, R12), and the other is (g,(Ll), 7(12),9;1) for the source (X (2),Y (3)) with rate (R, Rjs).

11



The encoders ¢(**) and ') send the first N, (e.g. N, = logn) symbols of each input
sequence of length n to the other encoder. Sharing the pair of sequences of length N,,, we
can select one of the SW codes, i.e. (f,(Ll), f,(f), 1) or (g,(Ll), 7(12),97:1) depending on for which
source the shared pair of sequences is typical. Then, the encoders 12 and x(??) send to the
decoder the first V,, symbols of the input sequence and the codewords of the selected SW
code. Since the decoder can have the knowledge of which SW code the encoders employ, the
estimate of the input pair of sequences can be obtained by using the corresponding decoder.

As a special case of Theorem 3, we immediately obtain the wv-SWL region for correlated

ergodic sources.
Corollary 3: If (X,Y) is a correlated ergodic source, then

Rowr(X,Y) ={(R, Ry) : Ri> H(XI|Y), R, > H(Y|X),
R+ R, > H(X,Y)}

Comparing Corollary 2 and 3, we have
Rswi(X,Y) = Rewr(X,Y)

for any correlated ergodic source (X,Y’). Hence, we cannot improve the coding rate for
ergodic sources even if we employ wv-SWL codes instead of ~SWL codes.
Next, we show that for a restricted class of ergodic sources, the rate pair in the region

twr(X,Y) can be achieved without any linkage of encoders.

Theorem 4: Assume that a correlated mixed source (X,Y’) satisfies both H(X 1)) #
H(X (3)) and H(Y (1)) # H(Y (3)). Then, for any (R, R;) € Ry (X,Y ), we can construct
a wv-SWL code {(905111),905112), 905121),905122),90;1) o0 , such that

905111)(;13) = 905121)(:1/) = (111111 StI‘iIlg),

for any & € X", y € Y™ and positive integer n. a

This theorem indicates that for a restricted class of correlated mixed sources, the wv-

SWL region can be achieved by the SW system. Further, in such a case, Rgw(X,Y) C

twr(X,Y), that is, a weak variable-length code can achieve smaller rate than the fixed-
length code for the SW system.

12



In Theorems 3 and 4, we only considered the mixture of two ergodic sources, but it can
be easily extended to the mixture of any finite number of ergodic sources. This implies the

next corollary which shows a simple version of universal coding for the SWL system.

Corollary 4: Let S = {(X1),Y (1)), " s (X (m)» Y (m))} be a set of finite number of cor-
related ergodic sources. For any set of rate pairs {(Ri1, Ri2),(R21, Re2), -+ ,(Rm1, Rm2)}

which satisfies
Ry > HX|Y(y), Ri>H(Y (| X)), Ra+Re>H(Xy),Y(),

for: =1,2,--- ,m, there exists a wv-SWL code {(905111),905112), 905121),905122 o t) 12, such that

1

. - (11) n —
Jim —E[l(en V(X)) 0,
1

. - (21) n —

Jim —E[l(en (Y5))] 0,
: 1 n
lim sup —Bl(¢, (X7 e8V(YE))] < Ra,
n—oo
. ]' n n
thHP;E[l(@gm(y(i),905111)(X(i))))] < R,
n—oo

fort=1,2,---,m

This corollary shows that only if we know that the correlated source belongs to the given
set S, we can encode a pair of sequences from the source (X(;), Y(;)) with a rate pair (R;;, R;2)
which is an arbitrary point in the admissible rate region of the source (X(;), ¥(;). Though this
corollary is valid for a finite set of sources, this result is rather different from the conventional
universal coding for SW systems with fixed length codes [11, 12]. The next theorem shows
that this property of the weak variable-length universal coding is strengthened for discrete

memoryless sources (DMS’s).

Theorem 5: Let S be a set of discrete memoryless correlated sources. Further, for every
source (X,Y) € S with the joint probability (), we correspond a rate pair (R;(Q), R2(Q))
which is an inner point of the SW region Rgy (X ,Y ). We assume that (R;(Q), R2(Q)) is a

continuous function of ). Then, there exists a universal wv-SWL code

{({V), 12 QL p22) ot ree

13



such that for any joint source (X,Y’) € S with the joint probability @,

lim SB[l (X)) = 0,
n—oo M,
1
. - (21) n _
lim —Efi(e(Y7))] = 0,
1
lim sup —E[l( U)X, eP(Y™)] < Ru(Q),
n— oo
1
limsup ~E[Il(e7 (Y, 00 (X™)] < Ra(Q).
n—oo N

This corollary shows that for each memoryless joint source, we may arbitrarily specify
the rate pair in its SW region, and that rate pair is admissible by universal wv-SWL code.
Without linkage of encoders, we can only realize the (universal) fixed-length coding. How-
ever, using the linkage of encoders, we can realize the variable-length coding depending on

the source.

IV. Proof of Theorems

Proof of Theorem 3:
(a) Converse part

For simplicity, we first introduce the following notations:

H'(X) £ aH(X)+(1-o)H(X ),

H'(Y) £ aH(Y )+ (1 - )H(Y (),
H'(X,Y) £ aH(X4),Y )+ (1-a)H(Xp),Y ),
H'(X|Y) £ aH(X)|Y()+ (1 - a)H(X )Y ()
H'(Y|X) £ aH(Y 1| X ) + (1 - a)H(Y )| X(2)

It should be noted that H*(-) and H*(-|-) coincides with the entropy rate and the conditional
entropy rate of the (correlated) mixed source, respectively. For example, H*(X) is equal to
the entropy rate of the mixed source X, and H*(X|Y') is equal to the conditional entropy
rate of the correlated mixed source (X,Y). Further, from the definition of entropy rate for

ergodic sources, we have the following chain rules
H(X,Y) = H'(X) + H'(Y|X) = H'(Y)+H'(X|Y). (7)

14



According to [5, Theorem 1.10] or [9, Theorem 2.3], there exists a variable-length code
{(Zn,2;1)}2, for the mixed source Y such that the encoder &, : Y™ — B* and the decoder
-1 B* — Y™ satisfy

i sup LBl ()] < (), (8)
2. (uly) =y Vyem (9)

Then, for a given wv-SWL code {(¢n () 905112),9051 2 905122),90;1)};? 1, We construct a sequence
of codes {(Yn, ¥ 1)} (¥ 1 XM X Y™ — B*, 1 : B* — X™ x V") for the correlated mixed
source (X,Y) as follows (see also Figure 2):

Uo(@,y) = o8 (@) * 52 (@, 07 (1)) * §a(y) } (10)

A o~
P (s1 % 53 % 53) = (89, 9 (B (55, 51))

for all (®,y) € X™ x V", where * represents a concatenation and

A
s1 = 905111)(‘13)7
A
s2 = o(a, 00 (y)),
A o~
s83 = Son(y)

(11 ) (12)  (21)

Since the images of 5, ¢n  and o, are all prefix sets, the image of v, is also a

Pn
prefix set. Further, from ( ) and (9), the error probability of this code can be bounded as

Pr{y, " (a(X",Y7)) # (X", Y")}
= Pr{p, (0P (X", e (Y™), P (Y7, oJD (X)) # (X7, Y7}

— 0 (n— 00).

This implies that {(,,¥;!)}>; is a weak variable-length code. Hence, according to [5,
Theorem 1.12] or [9, Theorem 3.1], it must satisfy

lim sup ~ Ell($a( X", Y™))] = H*(X,Y).

n—oo 1

15



Hence, we have

lim sup lE[l(@bn(Xn, Y™))l

n—oo N

: 1 n n n
limsup ~B[I(o{) (X)) + Ul (X7, 070 (Y™)))

n
n—oo N

H(PE(Y™)) + UBa(Y™))]
lim sup lE[l(SDSl)(Xn))] + lim sup lE[l(goS?)(X", 905121)(Yn)))]

n—oo 1 n—oo 1

H*(X,Y)

IA

I®

IA

+ lim sup lE[l(gogl)(Y"))] + lim sup EE[Z(@I(Y”))]

n—oo 1 n—oo 1

[

lim sup ~ ElI(¢2(X", o) (Y™)))] + lim sup — E[U(5a(Y™))]
n—oo N n—soco N

INE

. 1 n n *
lim sup — E[I(p{P(X™, o0V (Y™)] + HY(Y),

n—oo 1 "
where the equality (a) comes from (10), &) from (6) and () from (8). This implies

lim sup ~ B[U(p{D (X", o) (Y™))] = H'(X,Y) - H'(Y)

n
n—oo 1

= H'(X|Y),

where the last equality follows from (7). Therefore, if a wv-SWL code
{0, o, ol o)}y satisfies

. ]' n n
limsup — E[[(o{?(X™, oY(Y™)))] < Ry,

n—oo 1

then Ry > H*(X|Y). In a similar manner, if

1
lim sup ~ E[I(¢72 (Y™, oV (X™)))] < Ry,

n
n—oo 1

then R, > H*(Y |X). Further, R; + Ry > H*(X,Y) is obvious from [5, Theorem 1.12] or

[9, Theorem 3.1]. This completes the proof of the converse part.

(b) Achievability part

First, we consider the case where two ergodic sources (X (1), Y (1)) and (X (2), Y (3)) cannot

be discriminated by the entropy rate, i.e. a correlated mixed source (X,Y) satisfies the
following three conditions: H(X (1)) = H(X (3)), H(Y (1)) = H(Y (3)), and H(X (1),Y (1)) =
H(X (2),Y (3). In this case, we have Rsw(X,Y) = Ry (X,Y). Hence, for a given
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mixed source (X,Y’) and any rate pair (R, R2) € Ry (X,Y), there exists an SW code
{(90511), 90512), 9051_1))};?:1 which satisfies

1
lim sup — log Mfll) < Ry,

n—oo 1

1
lim sup — log M7(l2) < R,.
n

n—oo

This shows the existence of the wv-SWL code for any (R;, Rs) € Ry (X,Y), since the
SW code is a special case of the wv-SWL code.
Next, we consider the case where two ergodic sources (X (1),Y (1)) and (X (3),Y (3)) can

be discriminated by the entropy rate, i.e. a correlated mixed source (X,Y) satisfies at least

one of the following conditions (1) — (3):

© H(X()) # H(X ()
@ H(Y(l)) 7"é H(Y(2)) (11)
® H(X4),Y @) # H(X(2),Y ()

Here, we introduce two fundamental lemmas.

Lemma 1 (Asymptotic Equipartition Property (AEP)) [10]: For any ¢ > 0,6 > 0 and
ergodic sources (X (;), Y (;)) (¢ = 1,2), there exists an integer no(e,d, X (;), Y (;)) such that for
all n > no(a,J,X(i),Y(i))

1

1
—log ———— — H(X »))| > ¢
n P,Ez)(az) (X))

(VAN
>,

Pn{(a:,y) EX" x Y

(VAN
>,

P, {(a:,y) EXT X Y

P (y)
1
P (z,y)

] =)

P, {(a:,y) EX™ X YN ‘llog
n

simultaneously hold. a

Lemma 2: For a correlated mixed source (X,Y) given by (1), and any v > 0, we have

~ 1 1 1 1
PO (e,y) e X" x V" : |—log ——— — —log —- < max(vy,co/n
{( ) n " Py(e,y) n P,Ez)(a:,y) (rrcafm)
> 1 — exp(—n7), (12)
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for ¢ = 1,2 and any integer n > 0, where ¢p = —logmin(a,1 — a). O
The proof of Lemma 2 is given in Appendix.
(Step 1) Preliminaries

For any subset 4, C X" x V", we introduce the notations

Pr{(X",Y")eA} = Y Piey)
(8,Y)cAn
n n A 7 .
PI‘{(X(z),}/(z)) € An} = Z P,E)(‘Bay) (7’ = 172)
(2,Y)eA,

By the notations above, we immediately have

Pr{(X",Y") € 4,} = Y  Pu=,y)
(8,Y)cAn
= a Y Py +(1-a) >, P,y
(®,Y)€4n (®,Y)€4n

= aPr{(X(), Y1) € 4An} + (1 — a)Pr{(X(;), ¥5)) € 4} (13)
From (11), we can chose an ¢ such that

0 <3<« max{|H(X(1),Y(1)) — H(X(2),Y(2))|,
|H(X 1)) — H(X )], [H(Y (1)) — H(Y (3))[}- (14)

Then, we define subsets T (t=1,2) of X™ x Y™ by

1 A n n 1 1
T,g):{(w,y)ex Xy |Dleg pr s T HX e Ye)| s
1 1
;logP @)~ (X @) <e
1 1
~log 5 ) (Y i) < 6,}- (15)

Tt should be noted that T\”) is characterized not by P,Ei)(a:,y) but by P,(#,y). According
to (14) and (15), it is easy to see that TN TP = 0, i.e.

Pr{(X",Y") e TW NTP} =0 (16)
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Suppose that TS) denotes the complement of T, Then, from (13), we immediately

obtain

From the definition of T,Ei), we have

Pr{(X(), Y(}) ¢ T}

z n n . l #_ . .
{( y) X" X Y logP(m,y) H(X ;)Y () >€}
n- —_ 1 .
{SBEX logP( ) - H(X ) >€}
1

{yey"' >€}. (18)

—logP( ) H(Y(z))

According to Lemma 1 and Lemma 2 with v = ¢/2, for any é > 0 and sufficiently large n,
the first term in (18) can be bounded by
> s}

— H(X (), Y ;)

1

Zlog ——— — H(X .Y
) (X, Y @)

P {(a:,y) EX"x Y.

1

11 >
n Oan(‘Bay) :

n

S P(l){(az,y)e)c‘nxyn

1 1 1
and |—log —— — —log ————| < max(g/2,¢o/n
n " P(ey) n P,(f)(a:,y) ( o/™)
+P0) ¢ (2,y) € X" x Y- llog;#—llog ! > max(e/2,co/n)
n ’ . n Pn(SB,y) n P,,EZ)(SB,y) » C0
1

. 1
< P,(f){(a:,y) EX"x Y ‘—log — H(X 3, Y (5)
n

PO (2. > 5/2} + exp(—ny)

< 4.

In a similar manner, the second and third terms in (18) satisfy

. L1 1
Pé){aze.)( :‘—logpn(w) H(X ;) >€} < 4,
1
P(){yey"-‘—lo H(Y >a} < 4,
8 py) 1Y)
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for sufficiently large n. Since § > 0 can be chosen arbitrarily small, the right hand side of
(18) vanishes, that is,

lim Pr{(X7,Y}) ¢ TV} =0  (i=1,2). (19)

n—oo

Substituting (19) into (17), we obtain

lim Pr{(X",Y™) ¢ TV UTP} = 0. (20)

n—r o0
(Step 2) Determination of rate pairs (Ri1, R12) and (Rs1, Ras)

Suppose that we are given a rate pair (R, Rs) which satisfies

R, > aH(Xy)|Y )+ (1 - a)H(X3|Y (),
Ry > aH(Y 1| X)) + (1 - a)H(Y (3| X (3)),
R +Ry, > aH(X ,Y —I—( )H(.X@),Y@)).

)
It is easy to see that there exists a pair (Rl,R2) > 0 and ¢y > 0 such that

a)H(X (3),Y ()

Ri+Ry=aH(X1),Yu)+(1-
<SR <aH(X@g)+ (1-a)H(X (),

aH(X )Y 1)) + (1 - ) H(X (3)|Y ()
and (R, Rz) can be written as
R, = Ri+a,
Ry = Ry+ o.
Further, there exists 0 < 8 < 1 such that
Ry = BlaH(X)|Y ) + (1 - a)H(X(3)|Y ()
+(1 - ﬂ)( H(X ) + (1 - a)H(X(y)))
(aH (Y (1)) + (1 — a)H(Y (3)))
+(1 - ﬂ)( H(Y )| X 1)) + (1 = o) H(Y (3| X (3))).-

&
I
»

By using ¢; and ¢, and 3, define two rate pairs (Ry1, Ri2) and (Ra1, Rys) as
Ry, £ BH(Xw[Yw)+(1-BHY ) +a,
Riy £ BH(Y()+(1-B)H(Y 1) Xw) + e
Ry £ BH(X()Y)+(1- > (V) + e,
Ry £ BH(Y () +(1- B H(Y 5| X ) + .
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We can easily confirm that

aR;;+(1—a)Ryy = Ry, (21)
aRis+ (1 —a)Rys = R, (22)
and
Ry > H(X 1)|Y (1), Ry > H(X ()|Y (3)),
Ry > H(Y ()| X (1), Ryy > H(Y (5| X (2)), (23)

Ry + Ry > H(X 1), Y (1)), Ro1+ Ry > H(X(3),Y (3))-

(Step 3) Construction of wv-SWL code

From (23) and Corollary 1, we can see (R, Ri2) € Rew (X (1), Y (1)) and (R, Ryy) €
Rsw(X (2),Y (2)). Hence, there exists an SW code {(f,(ll), f,(l2), 1}, for the ergodic source
(X@),Y (1)), where

x5 (1,2, MO(£)},
& ym 5 {1,2,---, MO ()},
and {(fr(tl)afr(f),f,:l)}ff:l satisfies

1
lim sup — log MY(f,) < Ry,

n—oo N

1
lim sup ;log M,(f)(fn) < Rys, (24)

n—oo

Jim Pr{f(fID(XE)s 2 (Y0)) # (X0, Y)Y = 0.

Similarly, there exists an SW code {(g,(ll), 7(12),97:1) 2, for the ergodic source (X (3),Y (2)),

where

g1(11) P AT — {1727" : 7M(1)(gn)}7

91(12) : yn — {1727" : 7M1(z2)(gn)}7

and {(97(11),9512),9;1)};?:1 satisfies

1
lim sup — log MV (g,) < R,

n—oo 1V

1
lim sup — log M (gn) < Ras, (25)
n

n
n—oo

lim Pr{g," (9" (X(y), 637 (Y(3)) # (X(y), Y(5)} = 0.
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Further, since X is finite, for any positive integer m, we can easily construct a binary fixed-

length code (935,{),935,{)‘1) for the source X such that

E[l(3V(2))] < mlogM +1 Ve € X™,
TP (@) =2 Vaeaxm

A binary fixed-length code (9/0\512), 9/0\512)_1) for the source Y can be constructed similarly.
Now, define the sequence of integers { N, }>° ; such that

N,
0<N,<mn, limN,=o00, lim—=0. (26)

n—oo n—oo n
Then, we construct a wv-SWL code {(905111),905112),905121),905122),90;1)};?:1 as follows:

905111): 905111)(;13) 2 9/0\5\1,31(;131), where &, € XV is the first IV, symbols of @.

~(2)

y) = @ (Y1), where y; € YN is the first N, symbols of y.

905121): 905121)(

905112): Decode y, from a given codeword 905121)(;1/), then assign the codeword in the following

manner:

If (21,9,) € T N T, then o{? (=, 0% (y))
If (21,9;) € T( ) N Tgv), then o5 (2,0 (y))

Otherwise, 9051 )( ,9051 )(y)) =5

905122): Decode @; from a given codeword 905111)(513), then assign the codeword in the following

manner:

If (21,y;) € TS N T, then {2 (y, o\ ()
If (21,9,) € T ) T, then & (y, oV (@))

Otherwise, 9051 )(y,goglll)(a:)) 2

@-1: Since both 905111) and 905121) are prefix codes, for given 90511 )( ( )) and gon ( 905111)(513)),
we have o7 (), o\(y), and either (£{"(x), £\ (y)) or ( o (2),9 (y)). We first

decode (#1,y,) from (905111)(:13),905121)(1/)) and, output an estimate (Z,y) € X™ x V" in

the following manner:
If (21, 9,) € T N T, then (
I (e1,1) € T T, then (,9) = 57" (o8 (2), 17 ().

Otherwise, we declare an error.
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In the proposed code, we cannot obtain original sequence pairs in the following cases:

(i) (21,91) € TV N T and f71(fD (@), £2(v)) # (2, )
(i) (21,9,) € TP T and g7 (g (@), 9P (v)) # (=, )

(iii) (21,9;) € TG NTY or (x1,y;) ¢ T UTY

According to (2), (13) and (19), the probability of the event (i) can be bounded as

(2

Pr{(X™, YY) € TU AT and £71(F0(X™), fOY™) £ (X7, ¥")}

IA

<

—

oaPr{(Xe, YY) € T N TS and £, (FD(XG), £P(YE)) # (X0, Yi))

+(1 - a)Pr{(X, Y2) € T Ty and £ (FO(Xp)), FOYE) # (X3, Y5}
aPr{ £ (FIN(XT), FO(YE)) # (X3 Y0

+H(1 - )Pr{(XT, V) € T N TR}

aPr{ £ (fO(X7), FOYE) # (X0, Y + (1 — a)Pe{(XT7, YI) ¢ T}

0 (n — 00).

In a similar manner, the probability of the event (ii) vanishes as n — oo. Further, the

probability of the event (iii) vanishes as n — oo due to (16) and (20). Therefore, the

probability of decoding error vanishes as n — oo.

(Step 4) Evaluation of the average length of codeword

Lastly, we investigate the average length of codeword for the proposed code. For any
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§ > 0 and sufficiently large n, according to (13), (24) and (25), we have

L Bl (7, oD (v™)))]

n

IA

IA

L Bl (x7))]

n

1 —_
i (; log MV ( fn)> x Pr{(X™, Y¥) e TV n T}

1 J—
¥ (; log M,s”(gn)) x Pr{(X™, Y™) e T{) N T}

Ryp + 6)Pr{(X™, Y™ e 7Y nTH 3

n

Ry + 8)Pr{(X™,Y™) e T Ty }
N,log M + 1)

+a(Ri + 5)Pr{(X(A1r;’, Y(le)") € T]gln) N TE@{}
(2
+(1 - a)(Ru + OPr{(X, YY) € T N T}

1"
(B + 6Pr{(X(, Vi) € TR N Ty}

+(1 — a)(Ra + PH{(X, YY) € T¢) N Ty }

%(Nn log M + 1)

+a( Ry + OPr{(X[}, V) € TV}
+(1— o) (Rus + O)Pr{(X03r, Y2 ¢ T}
t+a(Ray + 6)Pr{(X[N7, YY) ¢ TN}

+(1— a)(Ra + 6)Pr{(X}y, Y) € T}

By using (19) and (26), we obtain

lim sup — E[(o1D (X", o) (Y™))] < aRyy + (1 — a)Ry; + 5.

n—oo 1

In a similar manner,

1
lim sup —E[l(go£?2)(Y", go(ll)(X")))] < aRja+ (1 — a)Ra + 6.

n—oo 1

n
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Since § > 0 is arbitrary, we can conclude

. 1 n n
lim sup — E[I({*) (X", 7V(Y™))] < aRi+ (1 — a)Ry = Ry,

n—oo 1
1

lim sup —E[I(e? (Y™, e (X™)))] < aRiz + (1 — a)Ray = Ry,
n—oo 1

where the last equalities come from (21) and (22). Hence, (Ri, R2) is admissible for the
wv-SWL system. This completes the proof of Theorem 3.
The extension of the theorem to the mixture of any finite number of ergodic sources is

immediate. Further, the proof of Corollary 4 can be done similarly by considering a fixed
length SW code for each source (X(i),Y(i)) with a rate pair (R;, Ri2) (¢ = 1,2,---,m)
instead of {(fn ,fn s}, and {(gn ,gn ,gn 1)}, in Step 2 and Step 3.

Proof of Theorem /:
By choosing ¢ such that

0 < 3e <min{|H(X 1)) — H(X3))|, [H(Y (1)) — H(Y ()|}

instead of (14), we have

1 1 1
{SBEX”: ;logpn(w)—H(X(l))‘Seand —10an(w) H(.X@))‘S&}:@
{ ey ‘11 L Hy. )‘< d | tog -1 — H(Y )‘<} i
Y :|—1lo — € an —0 <ep=
n O Py(y) W *Py) O

This implies that we can determine whether (@,y) € T or (@, ) ceT? by seeing only @
or y. Hence, by using the codes {(f,(ll),f,@,f;l) > | and {(gn , Jn ),gn )}, described in

the proof of Theorem 3, we construct a wv-SWL code {(9051 ), 905112), 905121), 905122), o) e, as
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follows:

5M(z) 2 A
@(y) £ A
0+ () i |Llog plgy — H(X )| <e,
"5112)(:13, ~5121)(_1,()) 2 1% g,(Ll)(az) if %log % — H(X@))‘ <e,
A otherwise,
0 fP(y) if »log 5o _H(Y(l))‘ <e,
G () & S teay) i [Hog g - HV)| <
A otherwise.

Lastly we describe the decoder ¢ !. For a given pair of codewords s; * sy = 955112)(513,)\) and
S3% 84 = 955122)(;1/, A) with s1,s3 € B and sy, 84 € B*, we output an estimate (2,y) € X" x Y»

as follows:

If 81 = 83 = 0 then (53\,:1/\) = fn_l(32734)‘
If 81 = 83 = 1 then (53\,:7/\) = 951(32734)'

Otherwise, we declare an error.

By using this code, in a similar manner as the proof of Theorem 3, we can show that the

rate pair (R, Ry) is admissible for the wv-SWL system. O

Proof of Theorem 5:

We only show the construction of universal code. The proof of the theorem can be done
in a similar manner as the proof of Theorem 3.

The encoder 905111) and 905121) are the same ones which defined in the proof of Theorem 3.
After sharing the pair of sequence {(z;, yi)}f\i"l between two encoders, each encoder calculates
the joint type [12] of the shared sequence i.e.

A 1

P.y(a,b) = N {i:z; =aand y; =b,1 <7 < N,}|, Y(a,b) € X x Y.

Let Py, denote the set of possible joint types of length N,. It is well-known that |Py,| <
(N, + 1)I*IVl (see e.g. [12]). For any § > 0 and any type Q € Py, there exists universal
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SW code (fg),fg), fQ_l) with block length n and a rate pair (R;(Q)+ 6, R2(Q) +46) [11, 12].
In the above notation, it should be noted that the joint probability ¢} determines only the

rate of the universal SW code. Then, we define the second encoders as

pP(=) = oY+ fp) (@),

PPy) = oV 1 (v),
where P,, denotes the type of the shared sequence. This implies that we choose the universal
SW code depending on the joint type P,,. Since the decoder can have the knowledge of the
type Pyy, it can output the estimate f;wly (fl(gz(a:),fl(gz(y))

Appendix

Proof of Theorem 2:
The proof of the achievability part is obvious from Theorem 1. So, we shall only prove
the converse part for the -SWL system under the condition
1
lim sup —log MM M2 < R,

S ? 21) p r(22 (27)
lim sup —log M*M*?) < R,

n—oo 1 -
which is weaker than the condition (4).

First, for any 4 > 0, we define the sets T (¢ =1,2,3) and S, by

T 2 {(az,y) eX"x Y. ;log

1
Z _10gM1(11) +7} ’
Po(zly) ~ n
- 1 1 1
@ 2 J(a,y) e A" x Y " log > “logM® 475,
n " Fu(yle) " n
- 1 1 1
'(3) = {(az,y) EXT XY : Zlog —— > —log MY M) —I—'y} ,
n Pn(a:,y) n

Sn é {(a:,y) EX" x Y 90;1(90511)(‘137?/)790512)(‘137?/)) = (way)}a

where
A
eM(@,y) = (¢l (=),9( (2,0 (y))),
A
eMN@,y) = (05 (), o (y, D (2))),
M,(f) a M,Ell)M,El2),
M1(l2) a M7E21)M7(l22)



By letting e, 2 Pr{(X",Y") ¢ S,}, we obtain

Pr{(X",Y") € T}

= Pr{(X",Y")eTWNnS,}+Prf{(X",Y") e TWNGT,}
< Pr{(X™,Y") e TV N S, } 4+ Pr{(X™,Y7) ¢ S,}
= Pr{(X",Y") e TV NS,} +e,. (28)

Note that if (@, y) € TV then P.(=|y) < exp(—n’y)/M,(ll). Hence, the first term of (28) can

be evaluated as

PI‘{(Xn,Yn) e T1(11) N Sn} = Z Pn(SB,y)
(®.y)etVns,

3y pn(y)w

e
(®.y)etVns, "

< ¥ pn(y)w

IA

0
(@.Y)eSn M
exp(—n7)
= Y P)ISa®)l— (29)
M
yeyn n

where S,(y) 2 {2 € X" : (2,y) € Sa}. Since ) (z,y) = (o4 (@), 12 (2, o (y))) and

90512) is a function of y and 1Y), 90512) is a function of y and 90511). Thus, for a given y € Y7,

the number of sequences € X™ which satisfy

e (W (=, y), 0P (2, y)) = (2,9)

(1)

is at most the number of codewords of ¢,,’. Then, we have
[Sn(@)] < I (X", ™) < M vy € Y.
Substituting this inequality into (29), we obtain
Pr{(X",Y") e TN N S,} < exp(—n~).
Hence (28) can be rewritten as

Pr{(X",Y") € TV} < e, + exp(—n7). (30)
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In a similar manner, we obtain
Pe{(X", V")
Pe{(X", V")

[P} < en+exp(—ny), (31)
T,E?’)} < en+exp(—ny). (32)

Now, let (R1, R;) be admissible for the f-SWL system. Then, there exists a fixed-length

SWL code such that for any v > 0 and sufficiently large n,
1

“log M) < R;+4, (33)
n
1
“log MY < Ry -+, (34)
n

nh_}n;en = 0. (35)

Substituting (33)-

—~

34) into (30)-(32), we have

en, > P,

1
(SB,y) € Xn X yn : ;].Og Z Rl —I— 2’7} — exp(—nﬂy),

1
P(z|y)

1
> Ry + 2 }—exp —ny),
Pyl = T2 2y o)

1
en > Pn{(w,y)EX"Xy":—log

> R+ Ry + 37} — exp(—n7y).

n P.(z,y)

Then, according to (35),

1 1
. n . > —
Jgrgopn{(w,y)e?( X Y nlOan(az|y) _R1—|-2’y} 0,
1 1
1 n n:— e ——— > =
nh—I>I<}oPn {(a:,y) cxX"xYy nlog Polyle) = R, —|-2’y} 0,

. n n‘ 1 1
lim P, {(w,y) €A x Y : —log P.(z,y)

From the definitions of the sup-entropy rates, we must have

ZR1‘|‘R2‘|‘3’)’} = 0.

=

R, +2y > H(X|Y),
Ry+2y > H(Y|X),
Ri+Ry+3y > H(X,Y).

Since 4 > 0 is arbitrary, we can conclude

R, > H(X|Y),
Ry, > H(Y|X),
Ri+R, > H(X,Y)



This completes the proof of Theorem 2. a

Proof of Lemma 2:
It is easy to see that for any (#,y) € X" x Y™ and ¢ = 1,2

Log— 1+ <14 ! L 4 (36)
—log ——— < —log - =—log ——"7-—+ —.
n " Pu(z,y) ~ n " min(a,1—a)PP(e,y) n  PO(x,y) n

On the other hand, for : = 1,2 we have

~ 1 1 1 1
PO (e, y) e X" x Y": —log ——— — —log ———— < —y
{( ) n " Pu(e,y) n T pPY(2,y)

= Z P,Ei)(w,y)

(®Y)exnxym
P (®,Y)< Pa(@,Y) exp(—n7)

< Y. Pu(=,y)exp(—ny)
(2,Y)exnxyn:
< exp(—ny). (37)
Then, by combining (36) and (37), we obtain

Péz){(ﬁ,y) c X‘n % yn .

g 1 _1 PR L
—log—————7<-log— < -log—+ + —
n " P2, y) n " Py(e,y) " n T p(2,y) n
. 1 1 1 1
= PO (2,y) e X" xY": —log——— — —log——— > —y
{( ) n " Puey) n T pY(e,y)

> 1—exp(—ny).

This completes the proof of Lemma 2. a
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