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Abstract

We propose use of QR decomposition with sort and
Dijkstra’s algorithm for decreasing the computational
complexity of the sphere decoder that is used for ML
detection of signals on the multi-antenna fading chan-
nel. QR decomposition with sort decreases the com-
plexity of search part of the decoder with small increase
in the complexity required for preprocess part of the
decoder. Dijkstra’s algorithm decreases the complex-
ity of searching part of the decoder with increase in the
storage complexity. The computer simulation demon-
strates that the complexity of the decoder is reduced
by the proposed methods significantly.

1. Introduction

In recent years the use of multiple transmit and
receive antennas over fading channels has attracted
great attention, because use of multiple antennas en-
ables very high spectral efficiency. In uncoded systems
with many transmit antennas, we face with the huge
number of possible transmitted signals, which makes
the naive maximal likelihood (ML) decoding impracti-
cal. The decoding is usually done by suboptimal algo-
rithms, such as the nulling and canceling algorithm [4].
However, recently an effective ML decoding algorithm
was proposed as the sphere decoder [2, 7], and it is
shown that the error rate of the ML decoder is signifi-
cantly smaller than the nulling and canceling algorithm
[2]. The drawback of the sphere decoder is that it is
much slower than the nulling and canceling algorithm,
and several researchers improved its efficiency, some of
which will be reviewed later.

The sphere decoder can be divided in two parts.
The first part computes the QR decomposition (or the

Full version of this abstract will appear in IEICE Trans.
Fundamentals.

Cholesky decomposition) of the fading matrix. The
second part computes the ML estimate of transmitted
signal from the received signal and the QR decomposi-
tion. We call the first part the preprocess part and the
second part the search part.

The signal from multiple transmit antennas can be
regarded as a vector. The traditional method of the
search part determines components in the transmitted
vector one by one. It is known that order of decisions
on signal components has large impact on the compu-
tational complexity of the search part [3]. We propose
the QR decomposition with sort as a method of the
preprocess part. The proposed method determines an
efficient order of decisions on signal components, and it
significantly reduces the computational complexity of
the search part with a little increase of the computa-
tional complexity in the preprocess part.

We will also show that the search part can be re-
garded as the shortest path problem in a weighted
graph and use of Dijkstra’ algorithm significantly re-
duces the computational complexity of the search part.
We verify the reduction of computational complexity
by computer simulation.

The QR decomposition with sort is modification only
in the preprocess part and use of Dijkstra’ algorithm is
only in the search part. Thus these improvements are
independent and can be used together or alone.

2. Brief review of the sphere decoder

Let �r = H�s + �n be the standard lowpass equiva-
lent description of frequency flat fading channel with t
transmit antennas and r receive antennas, where �s ∈ St

is the transmitted signal, �r is the received signal, �n is
additive white Gaussian noise (AWGN), H is the fad-
ing matrix, S is the signal constellation. We assume
r ≥ t. Let H = QR be a QR decomposition. Let �s′ be
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an ML estimate of �s. Then
‖�r − H�s′‖ = ‖�r − QR�s′‖

= ‖Q∗�r − Q∗QR�s′‖
= ‖Q∗�r − R�s′‖

is of minimum value among all possible transmitted
signals in St. Let Ri,j be the (i, j) entry of R, �s′ = (s′1,
. . . , s′t), and Q∗�r = (q1, . . . , qr).

We will informally review the original method in
search part [7]. It tries to find a vector �s′ ∈ St within
a sphere with radius

√
C and center �r, and considers

the inequality
‖Q∗�r − R�s′‖2 ≤ C. (1)

The t-th column in Q∗�r − R�s′ is qt − Rt,ts
′
t, and |qt −

Rt,ts
′
t|2 +

∑r
i=t+1 |qi|2 ≤ C is a necessary condition for

Eq. (1). So we choose ŝt ∈ S with |qt − Rt,tŝt|2 ≤ C

as a candidate of t-th component in �s′. Considering
(t − 1)-th and t-th columns in Q∗�r − R�s′, we choose
ŝt−1 ∈ S with∥∥∥∥

(
qt−1

qt

)
−

(
Rt−1,t−1 Rt−1,t

0 Rt,t

) (
ŝt−1

ŝt

)∥∥∥∥
2

+
r∑

i=t+1

|qi|2 ≤ C

as a candidate of (t − 1)-th component in �s′. The re-
maining ŝt−2, . . . , ŝ1 is determined in a similar manner.
If there is no candidate ŝi ∈ S, then we rechoose ŝi+1.
When we determine (ŝ1, . . . , ŝt), we set the new radius
to ‖�r − (ŝ1, . . . , ŝt)‖ and repeat the search part. The
last found vector is the ML estimate of the transmitted
signal. If there is no possible transmitted signal in the
sphere with initial radius

√
C, then we declare erasure

or increase the radius
√

C.

3. QR decomposition with sort

By inspecting the search part described above, we see
that if we make Ri,i large, the number of candidates for
ŝi decreases. It seems that decrease of the number of
candidates ŝi for large i makes the total computational
complexity of the search part small.

The QR decomposition computes Ri,i in increasing
order of i. We propose the QR decomposition with
sort that permutes columns of the decomposed matrix
before each computation of Ri,i such that Ri,i is mini-
mized.

The ordinary QR decomposition of H can be
sketched as follows: Compute a unitary matrix Q1 such
that the first column of Q1H is (R1,1, 0, . . . , 0)T . Let
H2 be (r − 1) × (t − 1) submatrix of Q1H with the
first column and the first row of Q1H removed. Com-
pute a unitary matrix Q2 such that the first column of

Q2H2 is (R2,2, 0, . . . , 0)T . The computation process is
recursively repeated until i = t.

We will describe the QR decomposition with sort.
Observe that in the ordinary QR decomposition R1,1

is equal to the norm of the first column vector of H .
In order to minimize R1,1, we replace the first column
of H with the column with minimum norm. Let H ′ be
the column replaced version of H . Compute a unitary
matrix Q′

1 such that the first column of Q′
1H

′ is (R′
1,1,

0, . . . , 0)T . Let H̃2 be (r − 1) × (t − 1) submatrix of
Q′

1H
′ with the first column and the first row of Q′

1H
′

removed. Replace the first column of H̃2 with the col-
umn with minimum norm in H̃2. Let H ′

2 be the column
replaced version of H̃2. Compute a unitary matrix Q′

2

such that the first column of Q′
2H

′
2 is (R′

2,2, 0, . . . , 0)T .
The computation process is recursively repeated until
i = t.

With this process we get a QR decomposition Q̂R̂
of the column permuted matrix Ĥ of H . If we apply
the traditional search part in Section 2 with Q̂R̂, then
we get more efficiently the permuted version of the ML
estimate �s′. The ML estimate �s′ can be obtained by
the permutation.

Other preprocess methods were proposed recently in
[3]. We will compare the proposed method with [3].
The same idea of sorted QR decomposition was also
used with the nulling and canceling detection in [8].

4. Search part as the shortest path problem

In this section we apply Dijkstra’s algorithm to the
search part to reduce the complexity of the search part
with increase in the storage complexity. Dijkstra’s al-
gorithm is an efficient algorithm to find the shortest
path from a point to a destination in a weighted graph
[1]. In this algorithm, the vertices on the graph are
searched for in increasing order of their distance from
the departure.

The decisions on ŝi essentially constructs a tree
where nodes at k-th level are correspond to the can-
didates of ŝt−k+1 [5], and the root is placed at the 0-th
level. Each level in the tree has �S nodes correspond-
ing to each element in S. Set the weight of the branch
from the node ŝi to its parent to∣∣∣∣∣∣qi −

t∑
j=i

Ri,j ŝj

∣∣∣∣∣∣
2

,

where ŝt, . . . , ŝi+1 are assumed to be ancestors of the
node ŝi in the tree. The nodes having the same parent
are arranged in the increasing order of the distance
from left to right. Add a virtual node at (t + 1)-th
level, and connect it to all the nodes at t-th level with
branch with weight zero.
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If we use Dijkstra’s algorithm to find the shortest
path from the root to the virtual node at (t + 1)-th
level, equivalently one of nodes at t-th level, we can get
the node at t-th level with the minimum

t∑
i=1

∣∣∣∣∣∣qi −
t∑

j=i

Ri,j ŝj

∣∣∣∣∣∣
2

= ‖Q∗�r − R�̂s‖2 −
r∑

i=t+1

|qi|2,

among all nodes at t-th level and it corresponds to the
ML estimate.

Dijkstra’s algorithm searches for only the nodes
whose distance is smaller than the minimum distance
of nodes at t-th level, but the original sphere decoder
[7] searches for the node whose distance is smaller than
C −∑r

i=t+1 |qi|2 and C −∑r
i=t+1 |qi|2 must be greater

than the minimum distance of nodes at t-th level in
order for ML detection succeed. So the number of
searched nodes of Dijkstra’s algorithm is smaller than
that of the original sphere decoder. In addition, Di-
jkstra’s algorithm does not require the radius of the
sphere to be initially set, and it always finds out ML
estimate without retrying to search for a lattice point
with increased radius. However because we use the
priority queue in Dijkstra’s algorithm, the storage com-
plexity increases.

5. Computer simulation

In this section, we show how much the complexity of
search part is reduced by QR decomposition with sort
and Dijkstra’s algorithm, and how much the complexity
of preprocessing part is increased by QR decomposition
with sort.

The radius of sphere used by the traditional search
part is defined so that
Pr{transmit point is in sphere} = Pr{C > ‖�n‖2}

≈ 0.99 (2)
where C is the square of radius and �n is a vector whose
element is noise at each receive antenna [5]. When there
is no lattice point in sphere, we increase the radius to
C + 1, and continue until a lattice point is found.

5.1. The system model

We consider the following system model.

• The number of transmit antennas is equal to the
number of receive antennas.

• The fading coefficients obey the CN (0, 1) distribu-
tion.

• The signal constellation for each transmit antenna
is 64-QAM and all signals are drawn according to
the uniform i.i.d. distribution.

In our simulations we use the average number of real
multiplications and divisions in each processing as the
measure of complexity, and in these simulations we use
the complex multiplications that needs three real mul-
tiplications and seven real additions, and the complex
divisions that needs five real multiplications, two real
divisions, and nine real additions [6].

5.2. The computer simulations

In Figs. 1 and 2 we show the effect of various prepro-
cess algorithms on the computational complexities of
the preprocess part and the search part without Dijk-
stra’s algorithm. In Figs. 1 and 2, SNR at each receive
antenna is set to 28dB. Horizontal axis in figures repre-
sents the number of transmit antennas. In figures, SD
corresponds to the ordinary QR decomposition, Norm-
SD corresponds to sorting the columns of H according
to norm of columns once before the QR decomposition
[3], Optimal-SD corresponds to sorting columns of H
so that min1≤i≤t Ri,i is maximized among all column
permutations [3], QR sort-SD corresponds to the pro-
posed preprocess method.

When the number of transmit antenna is 8 the com-
plexity of the search part is reduced about 55 percent
from the original sphere decoder by the proposed QR
decomposition with sort. However Fig. 2 shows the
complexity of preprocess part increases about 10 per-
cent.
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Figure 1: The complexity of search part for each re-
ceiving point

In Figs. 3 and 4 we show the comparison of the
complexities of the original sphere decoder (SD), Di-
jkstra’s algorithm (Dijkstra), and both of them us-
ing QR decomposition with sort (QR sort-SD, QR
sort+Dijkstra). The number of transmit antennas is
set to 8. Figure 3 shows that the complexity of search
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Figure 2: The complexity of preprocess part for each
fading matrix

part and Fig. 4 shows the cumulative distribution of
the size of priority queue with QR decomposition with
sort. When SNR is 26dB, the complexity of search part
is reduced about 25 percent from the original sphere de-
coder by Dijkstra’s algorithm, and is reduced about 65
percent from the original sphere decoder by combining
QR decomposition with sort and Dijkstra’s algorithm.
Figure 3 also shows that Dijkstra’s algorithm is much
faster than the sphere decoder when SNR is low.
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Figure 3: The complexity of search part for each re-
ceiving point
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