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Abstract

We propose a multilevel coding and multistage decod-
ing scheme which is universal for a class of additive
noise channels. Then, for a given pair of binary linear
codes, we show an upper bound of the decoding er-
ror probability. Further, we clarify the condition that
the proposed coding and decoding scheme achieves the
capacity of the channel and that the decoding error
probability vanishes exponentially with code length.

1. INTRODUCTION

A universal channel code [1] is a coding scheme
whose encoding and decoding do not depend on the
particular channel but can achieve the capacity of chan-
nel. Universal channel codes have been studied by
many researchers [1, 2, 3]. These researches picked up a
particular universal decoder for a class of channels (i.e.
memoryless channels or finite-state channels) and then
showed the existence of the (universal) encoder such
that the pair of encoder and decoder can achieve the
optimum error exponent asymptotically. Namely, they
first fix a universal decoder, and then find a universal
encoder specialized for the decoder. In this paper, we
explore another direction in the research of universal
channel codes, i.e. we first fix an encoder and uni-
versal decoder pair and then analyze the performance
of this coding scheme. Especially, we propose a mul-
tilevel coding (MLC) and multistage decoding (MSD)
scheme which is universal for a class of additive noise
channels. Then, for a given pair of binary linear codes,
we show an upper bound of the decoding error proba-
bility. Further, we clarify the condition that the pro-
posed MLC/MSD scheme achieves the capacity of the
channel and that the decoding error probability van-
ishes exponentially with code length. We believe that
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the obtained condition is not significant and almost all
good binary codes can satisfy this condition.

2. PRELIMINARIES

Consider a discrete memoryless channel (DMC)
with a common finite alphabet X for both input and
output, where we assume that X is an additive group.
A DMC can be characterized by the probability dis-
tribution function W (y|x), where x ∈ X denotes the
input to the channel, and y ∈ X denotes the output
of the channel. We assume an additive noise channel
which can be characterized by the transition proba-
bility W (y|x) = Q(y − x), where Q is a distribution
over X . WN (y|x) is the probability distribution for se-
quences of length N . Since the channel is memoryless,
we have

WN (y|x) =
N∏

n=1

Q(yn − xn),

where y = y1y2 · · · yN ∈ XN and x = x1x2 · · ·xN ∈
XN .

Let C(⊂ XN ) denote the set of codewords of a lin-
ear code which is represented by its parity-check ma-
trix A with L rows and N columns, N > L, such that
x ∈ XN is a codeword if and only if xAT = 0. Let
M denotes the number of different codewords in the
code C, and the rate of the code is R = (log M)/N .
In what follows, we assume that the base of logarithm
and exponent is two.

For a probability distribution P over the alphabet
X , the entropy of P is defined by

H(P )
�
= −

∑
a∈X

P (a) log P (a).

Similarly, for a distribution P over X and a conditional
distribution V (b|a), (a, b ∈ X ), the conditional entropy
is defined by

H(V |P ) =
∑
a∈X

P (a)H(V (·|a)).
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Further, for two probability distribution P1 and P2 over
the finite set Z, the divergence of distributions is de-
fined by

D(P1‖P2)
�
=

∑
a∈Z

P1(a) log
P1(a)
P2(a)

.

The type [2] of a sequence x ∈ XN and the joint
type of x and y ∈ XN are the probability distributions
Px and Pxy defined by

Px(a) =
1
N

|{n : xn = a, 1 ≤ n ≤ N}|, ∀a ∈ X

Pxy(a, b) =
1
N

|{n : (xn, yn) = (a, b), 1 ≤ n ≤ N}|,
∀(a, b) ∈ X 2.

The set of possible types of sequences in x ∈ XN is
denoted by PN .

For P ∈ PN , the type class {x ∈ XN : Px = P}
will be denoted by TP . Similarly, For any conditional
distribution V , we define TV (x) as

TV (x) = {(x, y) : x, y ∈ XN ,

Pxy(a, b) = V (b|a)Px(a), ∀(a, b) ∈ X 2}.

3. DECODING ERROR PROBABILITY FOR
ME DECODER

In this section, we shall show the performance
bound on the minimum entropy decoder for additive
channels.

The minimum entropy (ME) decoder is defined as
follows.

Definition 1 (The ME decoder): [8] For a linear
code C with length N and parity check matrix A, and
given a received sequence y ∈ XN , define the minimum
entropy (ME) decoder u : XN → C by

u(y)
�
= y + arg min

e∈XN :
eAT =yAT

H(Pe), (1)

where H(Pe) denotes the entropy of the type of e ∈
XN .

The next theorem shows that for a given linear code,
the performance of ME decoder for additive channels.

Theorem 1: Consider a linear code C with rate R
and length N . Denote the decoding error probability
by Pme, when a codeword of C is transmitted through
the additive noise channel W (y|x), and decoded by the
ME decoder. Then, we have

Pme ≤ (N + 1)2|X | exp {−N Eu(R + (log α)/N)} , (2)

where

Eu(R)
�
= min

P
[D(P‖Q)

+| log |X | − H(P ) − R|+], (3)
|x|+ = max{0, x},

α
�
= max

P∈PN :P (0) �=1

|C ∩ TP |
|TP | |X |N exp{−NR},

(4)

and the minimum in (3) is taken over the probability
distribution P over X .

This theorem is a natural extension of the result ob-
tained by Shulman and Feder [7] for binary linear codes.
It should also be noted that the error exponent Eu(R)
coincides with the random coding error exponent [2] of
the additive noise channel. This implies that as long
as (log α)/N is negligible small, the ME decoder is as
good as maximum likelihood (ML) decoder for additive
noise channels.

Proof of Theorem 1: We use the technique devel-
oped by Shulman and Feder [7] in order to bound the
probability of decoding error.

For a given linear code C, we construct an ensemble
C of linear codes as follows. Generate an ensemble C
from the given code by including all possible permuta-
tions σ of the order of the symbols in the codewords,
where the permutations are uniformly distributed. The
probability of decoding error of each code in C is ob-
viously equal to the probability of decoding error of
the original code C (the occurrence probability of er-
ror vector is invariant to codeword and symbol per-
mutation σ, since the channel is memoryless and the
occurrence probability of error vector only depends on
its type). Hence, the averaged probability of error over
the ensemble C is equal to the probability of error of
the original code C.

Over the ensemble C, it is easy to see that for any
nonzero vector z ∈ Xn with its type P , we have

Pr(zAT = O) ≤
∏

a∈X (NP (a))!
N !

× |C ∩ TP |

=
|C ∩ TP |
|TP |

≤ max
P∈PN :P (0) �=1

|C ∩ TP |
|TP |

= α|X |−N exp{NR}, (5)

where α is defined in (4). It should be noted that this
bound does not depend on the type P of z.

When the ME decoder is employed and the error
e ∈ Xn occurs, the probability of decoding error for
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the ensemble C is given by

Perror(e) =
∑
e′ �=e:

H(P ′)≤H(P )

Pr(eAT = e′AT ),

where P and P ′ denote the type of e and e′, respec-
tively. Then, by using (5) and a standard method of
type (see e.g. [2]), we have

Perror(e)

≤
∑
e′ �=e:

H(P ′)≤H(P )

α|X |−N exp{NR}

≤ α|X |−N exp{NR}
∑

P ′∈PN :H(P ′)≤H(P )

|T (P ′)|

≤ α|X |−N exp{NR}
∑

P ′∈PN :H(P ′)≤H(P )

exp{NH(P ′)}

≤ α|X |−N exp{NR}
∑

P ′∈PN :H(P ′)≤H(P )

exp{NH(P )}

≤ α|X |−N exp{NR}(N + 1)|X | exp{NH(P )}
= (N + 1)|X | exp{−N(−H(P ) + log |X |

−R − (log α)/N)}. (6)

On the other hand, Perror(e) ≤ (N + 1)|X | is obvious.
Hence, we have

Perror(e) ≤ (N + 1)|X | exp{−N | log |X | − H(P )
−R − (log α)/N |+}.

By using this inequality, the probability of decoding
error for the ensemble C is given by

Pme =
∑

e∈XN

Q(e)Perror(e)

≤ (N + 1)|X | ∑
P∈PN

exp{−ND(P‖Q)}

× exp{−N | log |X | − H(P ) − R − (log α)/N |+}
≤ (N + 1)2|X | exp{−N min

P∈PN

(D(P‖Q)

+| log |X | − H(P ) − R − (log α)/N |+)}
≤ (N + 1)2|X | exp{−N Eu(R + (log α)/N)}.

This completes the proof.

4. MULTILEVEL CODING AND MULTI-
STAGE UNIVERSAL DECODING

Usually, the complexity of the ME decoder is as
high as that of the ML decoder. Here, in order to
reduce the computational complexity of the decoder,
we introduce the multistage decoding. We shall analyze

the performance of the multistage decoding for a given
set of binary codes, and clarify its error exponent.

For simplicity, assume that X has a structure of two
dimensional vector space over F2, i.e. X = F2 × F2. It
should be noted that the result can be extended to the
case where X is a higher dimensional vector space over
F2. Let Ci (i = 1, 2) be a pair of binary linear codes
with rate Ri and the common length N . Now consider
the following multilevel coding (MLC) and multistage
decoding (MSD).

At the transmitter, let (x1, x2, · · · , xN ) ∈ FN
2

and (x′
1, x

′
2, · · · , x′

N ) ∈ FN
2 be codewords of

the code C1 and C2, respectively. Then,
((x1, x

′
1), (x2, x

′
2), · · · , (xN , x′

N )) ∈ XN is fed into
the channel. The rate of this MLC is Ro = R1 + R2.
For the received word

y = ((ŷ1, ŷ
′
1), (ŷ2, ŷ

′
2), · · · , (ŷN , ŷ′

N )) ∈ XN ,

the receiver decodes the pair of codewords as follows.
We first estimate the codeword x = (x1, x2, · · · , xN ) of
C1 from a binary vector ŷ = (ŷ1, ŷ2, · · · , ŷN ) by using
the ME decoder.

Next, we estimate the codeword (x′
1, x

′
2, · · · , x′

N ) of
C2 from a binary vector y′′ = (ŷ′

1, ŷ
′
2, · · · , ŷ′

N ) and the
error vector e estimated by the first decoder. The de-
coding of the code C2 is done by the following decoding
rule.

Definition 2 (The conditional ME decoder): For a
linear code C2 with length N and parity check matrix
A2, given a received sequence ŷ′ ∈ FN

2 and the esti-
mated error vector e ∈ FN

2 of the first stage decoder,
define the conditional minimum entropy (ME) decoder
ũ : FN

2 × FN
2 → C2 by

ũ(ŷ′, e)
�
= ŷ′ + arg min

e′∈F N
2

:

e′At
2
=ŷ′

At
2

H(Vee′ |Pe), (7)

where Vee′ denotes the conditional probability defined
by the joint type of (e, e′), i.e.

Vee′(a|b) �
=

Pee′(b, a)∑
a′∈F2

Pee′(b, a′)
, ∀(a, b) ∈ F 2

2 .

The next theorem is our main result.

Theorem 2: Let Pme,1 be the decoding error prob-
ability for the code C1, when the ME decoder is em-
ployed. Then, we have

Pme,1 ≤ (N + 1)4 exp {−N Eu(R1 + (log α(C1))/N)} ,
(8)
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where

Eu(R)
�
= min

P
[D(P‖Qo) + |1 − H(P ) − R|+],

α(C1)
�
= max

0<w≤N

S(C1, w)(
N
w

) exp{N(1 − R1)},

Qo(a)
�
= Q(a, 0) + Q(a, 1), ∀a ∈ F2.

and S(C1, w) denotes the number of codewords with
the weight w. Further, denote the decoding error prob-
ability by Pme,2, when the code C2 is decoded by the
conditional ME decoder. Then, assuming that the first
stage of decoding is successful, we have

Pme,2 ≤ (N + 1)6 exp {−N E′
u(R2 + (log α(C2))/N)} ,

(9)
where

E′
u(R)

�
= min

P,V
[D(P ·V ‖Q)+ |1−H(V |P )−R|+], (10)

and minimum is taken over any pair of distribution P
over F2 and conditional distribution V (b|a) (a, b ∈ F2).

This theorem implies that the total decoding error
probability can be bounded by

PMSD ≤ (N + 1)6 exp{−NE(R1, R2)},
where

E(R1, R2) = min[Eu(R1 + (log α(C1))/N),
E′

u(R2 + (log α(C2))/N)].

Hence, the decoding error probability vanishes expo-
nentially, if a pair of linear codes satisfies

lim
N→∞

1
N

log α(C1) = lim
N→∞

1
N

log α(C2) = 0. (11)

As is well known [9], the weight distribution of many
codes C with length N and rate R are well approxi-
mated by the binomial distribution, i.e.

S(C, w) ≈ exp{−NR}
(

N

w

)
.

Further, many BCH codes satisfy

S(C, w) = exp{−NR}
(

N

w

)
(1 + O(N−1/10)).

Hence, We believe that the condition (11) is not signif-
icant and almost all BCH codes can satisfy this condi-
tion.

Further, for the occurrence probability Q of error
in the channel, let

Wo(b|a)
�
=

Q(a, b)
Qo(a)

∀(a, b) ∈ F 2
2 .

Then, we have Eu(R1) > 0 whenever 0 ≤ R1 <
1 − H(Qo) and E′

u(R2) > 0 whenever 0 ≤ R2 <
1 − H(Wo|Qo). Since H(Wo|Qo) + H(Qo) = H(Q),
for a given rate Ro < 1 − H(Q), we can choose a pair
of rate such that Ro = R1 + R2 and

R1 < 1 − H(Qo) and R2 < 1 − H(Wo|Qo).

This implies that a combination of multistage codes
and MSD achieves the capacity of the channel as long
as a pair of linear codes satisfies the condition (11).

Lastly, we investigate the complexity of the de-
coder. The decoding complexity of MSD is at most
exp{NR1} + exp{NR2}, and is much smaller than
exp{N(R1 + R2)} of ML decoder or ME decoder.
Hence, MSD is more efficient than both ML decoder
and ME decoder, although the error exponent of MSD
may be smaller than that for ML decoder.

Proof of Theorem 2: Since the channel for the code
C1 is additive, (8) can be immediately obtained by The-
orem 1. So, we shall only prove (9).

Assume that e1 ∈ TP is the error vector estimated
by the first stage decoding. Then, by using a similar
technique used in the proof of Theorem 1, the proba-
bility that the error e ∈ TV (e1) cannot be estimated
correctly is upper bounded by

Perror(e|e1)

≤
∑
e′ �=e:

H(V ′|P )≤H(V |P)

α(C2) exp{N(R2 − 1)}

≤ α(C2) exp{N(R2 − 1)}
∑
e′ �=e:

H(V ′|P)≤H(V |P )

|TV ′(e1)|

≤ α(C2) exp{N(R2 − 1)}
×

∑
V ′:H(V ′|P )≤H(V |P )

exp{N H(V ′|P )}

≤ α(C2) exp{N(R2 − 1)}
×

∑
V ′:H(V ′|P )≤H(V |P )

exp{N H(V |P )}

≤ (N + 1)4α(C2) exp{N(R2 − 1)} exp{N H(V |P )}
≤ (N + 1)4 exp{−N(1 − H(V |P )

−R2 − (log α2)/N)}.

Again, Perror(e|e1) ≤ (N + 1)4 is obvious. Hence,

Perror(e|e1) ≤ (N + 1)4 exp{−N |1 − H(V |P )
−R2 − (log α2)/N |+}.

By using this inequality, assuming that the first stage
decoding is successful, the probability of the second
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stage decoder can be bounded by

Pme,2

=
∑

e∈F N
2 ,e1∈F N

2

Q(e, e′)Perror(e|e1)

≤
∑

P∈P,V ∈V(P )

exp{−D(P · V ‖Q)}

×(N + 1)4 exp{−N | − H(V |P ) − 1 + R2

−(log α2)/N |+}
≤ (N + 1)6 exp{−N min

P,V
(D(P · V ‖Q)

+|1 − H(V |P ) − R2 − (log α2)/N |+)}
= (N + 1)6 exp{−N E′′

u(R2 + (log α2)/N)}.

This completes the proof of Theorem 2.

5. GENERALIZATION OF THE RESULT

In this section, we generalize Theorem 1 and The-
orem 2 for more wide class of universal decoders. We
first define the decoding function.

Definition 3: A function fN : XN → R is said to
be a decoding function, provided that the following two
conditions are satisfied.
(Condition 1) For any x ∈ XN ,

1
N

fN(x) ≤ H(Px).

(Condition 2) There exists a constant β ≥ 0 (which
may depend on N) such that limN→∞ β/N = 0 and

∑
x∈XN

exp{−fN(x) − β} ≤ 1.

Each decoding function induces a corresponding
universal decoder as follows.

Definition 4: For a decoding function fN , and a
linear code C with length N and parity check matrix A,
and a received sequence y ∈ XN , define the universal
decoder f̂N : XN → C by

f̂N (y)
�
= y + arg min

e∈XN :
eAT =yAT

fN(Pe).

Example 1: fN (x) = NH(Px) is a decoding func-
tion with β = |X | log(N + 1). Hence the ME decoder
is a special case of the universal decoder.

Example 2: Ziv’s complexity fZ(x) defined by

fZ(x) = c(x) log c(x),

is a decoding function, where c(x) denotes the number
of distinct phrases in the parsing of x induced by the
incremental parsing [4].

Example 3: The length function of Rissanen’s adap-
tive arithmetic code [10] defined by

fR(x) = NH(Px) + log(N + 1),

is a decoding function.

These examples shows that almost all length func-
tions of universal lossless source codes satisfy Condi-
tions 1 and 2, and can be used as a decoding function.

The next theorem is a generalization of Theorem 1.

Theorem 3: Consider a linear code C with rate R
and length N . Denote the decoding error probability
by Pf̂ , when a codeword of C is transmitted through
the additive noise channel W (y|x), and decoded by the
universal decoder f̂N . Then, we have

Pf̂ ≤ (N + 1)2|X | exp {−N Eu(R + (β + log α)/N)} ,

(12)
where Eu(R) is defined in (3).

Proof of Theorem 3: This theorem can be proved in
a similar manner as the proof of Theorem 1. According
to Condition 2 of the decoding function, we have

∑
x∈XN

exp{−fN(x) − β} ≤ 1,

which shows that there exists a prefix code such that
x can be encoded into β + fN(x) bits. Hence, we have

|{e′ ∈ XN : fN (e′) ≤ fN (e)}| ≤ exp{β + fN (e)}
≤ exp{β + NH(Pe)},

where the last inequality comes from Condition 1 of
the decoding function. When the universal decoder f̂N

is employed and the error e ∈ TP occurs, the aver-
age probability of decoding error over the ensemble C
defined in the proof of Theorem 1 is given by

Perror(e)

=
∑
e′ �=e:

fN (e′)≤fN (e)

Pr(eAT = e′AT )

≤
∑
e′ �=e:

fN (e′)≤fN (e)

α|X |−N exp{NR}

≤ α|X |−N exp{NR}
∑

P ′∈PN :H(P ′)≤H(P )

exp{β + NH(P )}

≤ (N + 1)|X | exp{−N(−H(P ) + log |X |
−R − (β + log α)/N)}.
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By using this inequality instead of (6), we can prove
Theorem 3 in a similar manner as Theorem 1.

Next, we consider a generalization of the conditional
ME decoder.

Definition 5: A function fN : FN
2 ×FN

2 → R is said
to be a conditional decoding function, provided that the
following two conditions are satisfied.
(Condition 1) For any (x, y) ∈ FN

2 × FN
2 ,

1
N

fN (x, y) ≤ H(Pxy),

where Pxy denotes the joint type of (x, y).
(Condition 2) There exists a constant β ≥ 0 such that
limN→∞ β/N = 0 and∑
y∈F N

2

exp{−fN(x, y) + H(Px) − β} ≤ 1, ∀x ∈ FN
2 .

Each conditional decoding function induces a cor-
responding universal decoder as follows.

Definition 6: In the MSD, for a conditional decod-
ing function fN , a linear code C2 with length N and
parity check matrix A2, a received sequence ŷ′ ∈ FN

2

and the estimated error vector e ∈ FN
2 of the first

stage decoder, define the conditional universal decoder
f̃N : FN

2 × FN
2 → C2 by

f̃N (e, ŷ′)
�
= ŷ′ + arg min

e′∈F N
2

:

e′At
2
=ŷ′

At
2

f(e, e′). (13)

Example 4: fN (x, y) = N(H(Vxy |Px) + H(Px))
is a decoding function with β = 4 log(N + 1). Since
H(Px) does not depend on y, for any given x, y min-
imizing fN(x, y) also minimizes H(Vxy |Px). Hence,
the conditional ME decoder is a special case of the con-
ditional universal decoder.

Example 5: Let c(x, y) denote LZ complexity [4] of
the joint sequence (x, y), that is, the number of phrases
obtained by incremental parsing for the joint sequence.
Then,

fN (x, y) = c(x, y) log c(x, y)

is a conditional decoding function.

The next theorem is a generalization of Theorem 2.

Theorem 4: In the MSD, denote the decoding error
probability at the second stage by Pf̂ ,2, when the code
C2 with rate R2 is decoded by the conditional universal
decoder f̂N . Then, assuming that the first stage of
decoding is successful, we have

Pf̂ ,2 ≤ (N+1)6 exp {−N E′
u(R2 + (β + log α(C2))/N)} ,

(14)

where E′
u(R) is defined in (10).

This theorem can be proved in a similar manner as
Theorem 2, by using a similar argument in the proof
of Theorem 3. So, we omit the proof.
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